RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

5-(2-pyridyl)tetrabenzoporphyrin and its complexes with zinc, cobalt, copper and iron. synthesis, spectral, electrochemical and electrocatalytic properties

PII
10.31857/S0044460X23070168-1
DOI
10.31857/S0044460X23070168
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 7
Pages
1114-1123
Abstract
The interaction of phthalimide with 2-picoline in the presence of zinc oxide synthesized 3-(pyridin-2-ylmethylene)isoindolin-1-one. Heating its mixture with an excess of phthalimide and zinc acetate leads to the formation of zinc 5-(2-pyridyl)tetrabenzoporphyrinate, which, upon treatment with acid, is converted to 5-(2-pyridyl) tetrabenzoporphyrin. The latter, when interacting with cobalt(II), copper(II), and iron(III) chlorides in DMF, forms the corresponding metal complexes. The composition and structure of the obtained compounds were confirmed by mass spectrometry, vibrational, 1H NMR, and electron spectroscopy. The results of quantum-chemical calculations of complexes by the DFT method are presented. A correlation is established between the energy gap between the frontier orbitals and the positions of the first bands in the electronic absorption spectra. All the synthesized tetrabenzoporphyrins exhibit catalytic activity in the electroreduction of oxygen, the highest activity being exhibited by cobalt and copper complexes.
Keywords
2-пиколин мезо-пиридилтетрабензопорфирин металлокомплекс спектральные свойства квантово-химические расчеты электрохимия электрокатализ
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Takahashi K., Shan B., Xu X., Yang S., Koganezawa T., Kuzuhara D., Aratani N., Suzuki M., Miao Q., Yamada H. // ACS Appl. Mat. Interfaces. 2017. Vol. 9. N 9. P. 8211. doi 10.1021/acsami.6b13988
  2. 2. Paolesse R., Nardis S., Monti D., Stefanelli M., Di Natale C. // Chem. Rev. 2017. Vol. 117. N 4. P. 2517. doi 10.1021/acs.chemrev.6b00361
  3. 3. Baluschev S., Yakutkin V., Miteva T., Wegner G., Roberts T., Nelles G., Yasuda A., Chernov S., Aleshchenkov S., Cheprakov A. // New J. Phys. 2008. Vol. 10. N 1. P. 013007. doi 10.1088/1367-2630/10/1/013007
  4. 4. Wang X.D., Wolfbeis O.S. // Chem. Soc. Rev. 2014. Vol. 43. N 10. P. 3666. doi 10.1039/C4CS00039K
  5. 5. Галанин Н.Е., Колесников Н.А., Кудрик Е.В., Шапошников Г.П. // ЖОрХ. 2004. Т. 40. № 2. С. 297
  6. 6. Galanin N.E., Kolesnikov N.A., Kudrik E.V., Shaposhnikov G.P. // Russ. J. Org. Chem. 2004. Vol. 40. N 2. P. 269. doi 10.1023/b:rujo.0000034952.23380.cd
  7. 7. Галанин Н.Е., Кудрик Е.В., Лебедев М.Е., Александрийский В.В., Шапошников Г.П. // ЖОрХ. 2005. Т. 41. № 2. С. 306
  8. 8. Galanin N.E., Kudrik E.V., Lebedev M.E., Aleksandriiskii V.V., Shaposhnikov G.P. // Russ. J. Org. Chem. 2005. Vol. 41. N 2. С. 298. doi 10.1007/s11178-005-0161-7
  9. 9. Коптяев А.И., Базанов М.И., Галанин Н.Е. // ЖОрХ. 2020. Т. 56. № 5. С. 735
  10. 10. Koptyaev A.I., Bazanov M.I., Galanin N.E. // Russ. J. Org. Chem. 2020. Vol. 56. N 5. С. 788. doi 10.1134/S1070428020050103
  11. 11. Koehorst R.B.M., Kleibeuker J.F., Schaafsma T.J., de Bie D.A., Geurtsen B., Henrie R.N., van der Plas H.C. // J. Chem. Soc., Perkin Trans. 2. 1981. N 7. P. 1005. doi 10.1039/P29810001005
  12. 12. Edwards L., Gouterman M., Rose C.B. // J. Am. Chem. Soc. 1976. Vol. 98. N 24. P. 7638. doi 10.1021/ja00440a031
  13. 13. Senge M.O., Bischoff I. // Tetrahedron Lett. 2004. Vol. 45. N 8. P. 1647. doi 10.1016/j.tetlet.2003.12.121
  14. 14. Filatov M.A., Lebedev A.Y., Vinogradov S.A., Cheprakov A.V. // J. Org. Chem. 2008. Vol. 73. N 11. P. 4175. doi 10.1021/jo800509k
  15. 15. Lebedev A.Y., Filatov M.A., Cheprakov A.V., Vinogradov S.A. // J. Phys. Chem. (A). 2008. Vol. 112. N 33. P. 7723. doi 10.1021/jp8043626
  16. 16. Чижова Н.В., Мальцева О.В., Завьялов А.В., Мамардашвили Н.Ж. // ЖНХ. 2017. Т. 62. № 5. С. 689
  17. 17. Chizhova N.V., Mal'tseva O.V., Zav'yalov A.V., Mamardashvili N.Zh. // Russ. J. Inorg. Chem. Vol. 62. N 5. P. 683. doi 10.1134/S0036023617050072
  18. 18. Мамардашвили Г.М., Чижова Н.В., Кайгородова Е.Ю., Мамардашвили Н.Ж. // ЖНХ. 2017. Т. 62. № 3. С. 296
  19. 19. Mamardashvili G.M., Chizhova N.V., Kaigorodova E.Y., Mamardashvili N.Zh. // Russ. J. Inorg. Chem. Vol. 62. N 3. P. 301. doi 10.1134/S0036023617030123
  20. 20. Cromer S., Hambright P., Grodkowski J., Neta P. // J. Porph. Phthal. 1997. Vol. 1. N 1. P. 45. doi 10.1002/(SICI)1099-1409(199701)1:13.0.CO;2-D
  21. 21. Kobayashi N., Koshiyama M., Osa T. // Inorg. Chem. 1985. Vol. 24. N 16. P. 2502. doi 10.1021/ic00210a009
  22. 22. Kohn W., Sham L.J. // Phys. Rev. 1965. Vol. 140. N 4A. P. A1133. doi 10.1103/PhysRev.140.A1133
  23. 23. Granovsky A.A. Firefly, V. 8.2.0 http://classic.chem.msu.su/gran/gamess/index.html
  24. 24. Andrienko G.A. Chemcraft, V.1.8. http://www.chemcraftprog.com
  25. 25. Adamo C., Vincenzo B. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158. doi 10.1063/1.478522
  26. 26. Rappoport D., Furche F. // J. Chem. Phys. 2010. Vol. 133. N 13. P. 134105. doi 10.1063/1.3484283
  27. 27. Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. // Int. J. Mol. Sci. 2022. Vol. 23. N 2. P. 939. doi 10.3390/ijms23020939
  28. 28. Berezina N.M., Klueva M.E., Bazanov M.I. // Macroheterocycles. 2017. Vol. 10. N 3. P. 308. doi 10.6060/mhc170507b
  29. 29. Petrova D.V., Semeikin A.S., Berezina N.M., Berezin M.B., Bazanov M.I. // Macroheterocycles. 2019. Vol. 12. N 2. P. 119. doi 10.6060/mhc190553s
  30. 30. Do Ngoc Minh, Berezina N.M., Bazanov M.I., Semeikin A.S., Glazunov A.V. // Macroheterocycles. 2015. Vol. 8. N 1. P. 56. doi 10.6060/mhc140714b
  31. 31. Филимонов Д.А., Алексеева С.В., Базанов М. И., Койфман О.И., Кокорин М.С. // Макрогетероциклы. 2018. Т. 11. № 1. С. 52. doi 10.6060/mhc151204b
  32. 32. Березина Н.М., Базанов М.И., Максимова А.А., Семейкин А.С. // ЖФХ. 2017. Т. 91. № 12. С. 2084
  33. 33. Berezina N.M., Bazanov M.I., Maksimova A.A., Semeikin A.S. // Russ. J. Phys. Chem. (A). 2017. Vol. 91. N 12. P. 2377. doi 10.1134/S0036024417120032
  34. 34. Ke X., Kumar R., Sankar M., Kadish K.M. // Inorg. Chem. 2018. Vol. 57. N 3. P. 1490. doi 10.1021/acs.inorgchem.7b02856
  35. 35. Laba K., Lapkowski M., Officer D.L., Wagner P., Data P. // Electrochim. Acta. 2020. Vol. 330. P. 135140. doi 10.1016/j.electacta.2019.135140
  36. 36. Do Ngoc Minh, Berezina N.M., Bazanov M.I., Semeikin A.S., Glazunov A.V. // Macroheterocycles. 2014. Vol. 7. N 1. P. 73. doi 10.6060/mhc131159b
  37. 37. Березина Н.М., Базанов М.И., До Нгок Минь, Семейкин А.С. // Изв. вузов. Сер. хим. и хим. технол. 2012. Т. 55. № 11. С. 45.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library