RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Phosphonomethylated acetoxymethyl derivatives of acetylfurans and alkyl furoates with the remote location of substituents: synthesis and further transformations

PII
10.31857/S0044460X23030083-1
DOI
10.31857/S0044460X23030083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 3
Pages
393-416
Abstract
Methods of synthesis of phosphonomethylated acetoxymethyl derivatives of acetylfurans and alkyl furoates with the remote location of functional groups were developed. Investigation of methanolysis of these compounds in presence of sodium methylate showed that complete transesterification of acetates is achived when the equimolar amount of base is used. It takes place due to high acidity of furan alcohols. If acetoxymethyl group is located in the position 3 of the furan ring, and diethoxyphosphorylmethyl one - in the position 2, cleavage of P-C bond takes place. If phosphonomethyl group is located in the position 3, and acetoxymethyl one occupies position 2 or 4, transesterification of ester groups of phosphonate takes place, but P-C bond is not touched. The ester group of carbonic acid is transesterified in any case. The alcohols formed are oxidized according to Kollins to give the corresponding aldehydes. 2-Furylbenzo[ d ]thiazole having ester and diethoxyphosphorylmethyl groups in the furan ring was synthesized by reacting methyl 2-(diethoxyphosphorylmethyl)-5-formylfuran-3-carboxylate with 2-aminothiophenol.
Keywords
гидроксиметилацетилфуран гидроксиметилфуранкарбоновые кислоты фурилметанфосфонаты хлорметилирование фуральдегиды бензотиазол
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Успехи химии фурана / Под ред. Э.Я. Лукевица. Рига: Зинатне, 1978. С. 161.
  2. 2. Кучеров В.Ф., Мавров М.В., Держинский А.Р. Природные полиацетиленовые соединения. М: Наука, 1972. С. 257.
  3. 3. Садыков А.С., Асланов Х.А., Кушмурадов Ю.К. Алкалоиды хинолизидинового ряда. М: Наука, 1975. С. 37.
  4. 4. Еляков Г.Б., Стоник В.А. Терпеноиды морских организмов. М: Наука, 1986. С. 106.
  5. 5. Bauvais C. Thèse de doctorat d'écologie chimique et microbienne. Université Pierre et Marie Curie, Sorbonne Universites, Paris. 2015. P. 66.
  6. 6. Williams H., Kaufmann P., Mosher H. // J. Org. Chem. 1955. Vol. 20. N 8. P. 1139. doi 10.1021/jo01365a024
  7. 7. Lee I.-S.H., Jeuong E.H., Chang K.L. // J. Heterocycl. Chem. 1996. Vol. 33. N 6. P. 1711. doi 10.1002/jhet.5570330627
  8. 8. Beaulieu P.L., Bousquet Y., Gauthier J., Gillard J., Marquis M., McKercher G., Pellerin C., Valois S., Kukolj G. // J. Med. Chem. 2004. Vol. 47. N 27. P. 6884. doi 10.1021/jm040134d
  9. 9. Ачкасова А.А., Ельчанинов М.М., Милов А.А., Лукьянов Б.С. // ХГС. 2005. Т. 41. № 13. С. 1815
  10. 10. Achkasova A.A., Elchaninov M.M., Milov A.A., Lukyanov B.S. // Chem. Heterocycl. Compd. 2005. Vol. 41. N 12. P. 1494. doi 10.1007/s10593-006-0026-1
  11. 11. Newrekar M.V. // Int. J. Pharm. Pharm. Res. 2018. Vol. 13. N 4. Р. 19.
  12. 12. Kim B.H., Han R., Kim J.S., Jun Y.M., Baik W., Lee B.M. // Heterocycles. 2004. Vol. 63. N 1. P. 41. doi 10.3987/COM-03-9903
  13. 13. Li Q., Chen Y., Xing S., Liao Q., Xiong B., Wang Y., Lu W., He S., Feng F., Liu W., Chen Y., Sun H. // J. Med. Chem. 2021. Vol. 64. N 10. P. 6856. doi 10.1021/acs.jmedchem.1c00167
  14. 14. Liu L., Zhang F., Wang H., Zhu N., Liu B., Hong H., Han L. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2017. Vol. 192. N 4. P. 464. doi 10.1080/10426507.2016.1259227
  15. 15. Abdellaoui F., Youssef C., Ben Ammar H., Soulé J-F., Doucet H. // Synthesis. 2014. Vol. 46. N 24. P. 3341. doi 10.1055/s-0034-1379021
  16. 16. Pat. WO 2004033652A2 (2004).
  17. 17. Kidwai M., Sapra Р. // Org. Prep. Proc. Int. 2001. Vol. 33. N 4. P. 381. doi 10.1080/00304940109356606
  18. 18. Pat. WO 2018055235A1 (2018).
  19. 19. Jumppanen M., Kinnunen S.M., Välimäki M.J., Talman V., Auno S., Bruun T., Boije af Gennäs G., Xhaard H., Aumüller I.B., Ruskoaho H., Yli-Kauhaluoma J. // J. Med. Chem. 2019. Vol. 62. P. 8284. doi 10.1021/acs.jmedchem.9b01086
  20. 20. Pat. TW 201802094A (2018).
  21. 21. Pat. US 2007167622A (2007).
  22. 22. Pat. WO 2011159067A2 (2011).
  23. 23. Pat. WO 2015191630A1 (2015).
  24. 24. Dufert M.A., Billingsley K.L., Buchwald S.L. // J. Am. Chem. Soc. 2013. Vol. 135. N 34. P. 12877. doi 10.1021/ja4064469
  25. 25. Pat. WO 2006091592A1 (2006).
  26. 26. Pt. WO 2007014023A1 (2007).
  27. 27. Pat. WO 2008062026A1 (2008).
  28. 28. Pat. WO 2008034863A2 (2008).
  29. 29. Garg A., Borah N., Sultana J., Kulshrestha A., Kumar A., Sarma D. // Appl. Organomet. Chem. 2021. Vol. 35. N 9. P. e6298. doi 10.1002/aoc.6298
  30. 30. Quan X.-J., Ren Z.-H., Wang Y.-Y., Guan Z.-H. // Org. Lett. 2014. Vol. 16. N 21. P. 5728. doi 10.1021/ol5027975
  31. 31. Kuzmich D., Mulrooney C. // Synthesis. 2003. Vol. 11. P. 1671. doi 10.1055/s-2003-40884
  32. 32. Pat. WO 2008046582A1 (2008).
  33. 33. Певзнер Л.М., Поняев А.И. // ЖОХ. 2022. Т. 92. Вып. 9. С. 1387. doi 10.31857/S0044460X22090074
  34. 34. Pevzner L.M., Ponyaev A.I. // Russ. J. Gen. Chem. 2022. Vol. 92. N 9. P. 1637. doi 10.1134/S1070363222090079
  35. 35. Певзнер Л.М., Поняев А.И. // ЖОХ. 2021. Т. 91. Вып. 4. С. 556. doi 10.31857/S0044460X21040107
  36. 36. Pevzner L.M., Ponyaev A.I. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. P. 636. doi 10.1134/S1070363221040107
  37. 37. Певзнер Л.М., Завгородний В.С. // ЖОХ. 2018. Т. 88. Вып. 3. С. 411
  38. 38. Pevzner L.M., Zavgorodnii V.S. // Russ. J. Gen. Chem. 2018. Vol. 88. N 3. P. 439. doi 10.1134/S1070363218030106
  39. 39. Fernandez S.J., Oltra J.E., Pallares A., Zafra M.J. // Anales de Quimica. 1991. Vol. 87. N 2. P. 274.
  40. 40. Williams P.H., Payne G.B., Sullivan W.J., Van Ess P.R. // J. Am. Chem. Soc. 1960. Vol. 82. N 18. P. 4883. doi 10.1021/ja01503a033
  41. 41. Corey E.J., Ghosh A.K. // Chem. Lett. 1987. Vol. 16. N 1. P. 223. doi 10.1246/cl.187.223
  42. 42. Певзнер Л.М. // ЖОХ. 2016. Т. 86. Вып. 5. С. 782
  43. 43. Pevzner L.M. // Russ. J. Gen. Chem. 2016. Vol. 86. N 5. P. 1046. doi 10.1134/S107036321605011X
  44. 44. Maleki B., Salehbadi H. // Eur. J. Chem. 2010. Vol. 1. N 4. P. 377. doi 10.5155/eurjchem.1.4.377-380.165
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library