- PII
- S30345596S0044460X25070077-1
- DOI
- 10.7868/S3034559625070077
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 95 / Issue number 7-8
- Pages
- 305-318
- Abstract
- The reaction of urea with ethylene glycol to form ethylene carbonate catalyzed by zinc lactate was studied by the quantum-chemical density functional method B3LYP. The interaction proceeds in two stages. In the first stage, 2-hydroxyethylcarbamate is formed, which is transformed to ethylene carbonate and ammonia in the second stage. The stage limiting the reaction rate is the first stage. Four independent routes for the formation of 2-hydroxyethylcarbamate were revealed. Both monomeric and dimeric glycol molecules take part in its formation. The routes involving dimeric glycol molecules are kinetically and thermodynamically more favorable. In the zinc lactate-catalyzed transformation of 2-hydroxyethylcarbamate into ethylene carbonate, ethylene glycol acts as an effective co-catalyst. This stage is essentially reversible. The use of super stoichiometric amounts of ethylene glycol, the use of elevated temperatures, and the removal of ammonia from the reaction medium are factors that allow the successful production of ethylene carbonate by urea glycolysis under zinc lactate catalysis.
- Keywords
- квантово-химические расчеты мочевина этиленкарбонат катализ
- Date of publication
- 04.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Yi W.B., Gao X., Zhang W. Biorenewable Solvents for Organic Synthesis. Sham: Springer, 2024. 48 p.
- 2. Yang J., Wang Y., Liu Y., Duan G., Liang Z., Han J., Huang Y., Han X., Zhang C., He S., Jiang S. // Fuel. 2025. Vol. 379. P. 133048. doi 10.1016/j.fuel.2024.133048
- 3. Ye S., Wang S., Lin L., Xiao M., Meng Y. // Adv. Ind. Eng. Polym. Res. 2019. Vol. 2. N 4. P. 143. doi 10.1016/j.aiepr.2019.09.004
- 4. Wang L., Li Y., Yang J., Wu Q., Liang S., Liu Z. // Int. J. Mol. Sci. 2024. Vol. 25. N 5. P. 2938. doi 10.3390/ijms25052938
- 5. Kotanen S., Wirtanen T., Mahlberg R., Anghelescu-Hakala A., Harjunalanen T., Willberg-Keyrilainen P., Laaksonen T., Sarlin E. // J. Appl. Polym. Sci. 2023. Vol. 140. N 24. P. e53964. doi 10.1002/app.53964
- 6. Ban J.L., Li S.Q., Yi C.F., Zhao J.-B., Zhang Z.-Y., Zhang J.-Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi 10.1007/s10118-018-2165-0
- 7. Seithümmer J., Knospe P., Reichmann R., Gutmann J.S., Hoffmann-Jacobsen K., Dornbusch M. // J. Coat. Technol. Res. 2023. Vol. 20, N 1. P. 173. doi 10.1007/s11998- 022-00665-3
- 8. Mundo F., Caillol S., Ladmiral V., Meier M.A. // ACS Sustain. Chem. Eng. 2024. Vol. 12. N 17. P. 6452. doi 10.1021/acssuschemeng.4c01274
- 9. Ryan T.A., Seddon E.A., Seddon K.R., Ryan C. Phosgene: and Related Carbonyl Halides. Amsterdam: Elsevier. 1996. 932 p.
- 10. Mishr V., Peter S.C. // Chem Catal. 2024. Vol. 4. N 1. P. 100796. doi 10.1016/j.checat.2023.100796
- 11. Brege A., Grignard B., Méreau R., Detrembleur C., Jerome C., Tassaing T. // Catalysts. 2022. Vol. 12. N 2. P. 124. doi 10.3390/catal12020124
- 12. Han C., Wang R., Shu C., Li X., Li H., Gao X. // React. Chem. Eng. 2022. Vol. 7. N 12. P. 2636. doi 10.1039/D2RE00289B
- 13. Mota C.J. // Curr. Org. Chem. 2024. Vol. 28. N 4. P. 1069. doi 10.2174/0113852728304402240403052919
- 14. Kotyrba Ł., Chrobok A., Siewniak A. // Catalysts. 2022. Vol. 12. N 3. P. 309. doi 10.3390/catal12030309
- 15. Shukla K., Srivastava V.C. // Catal. Rev. 2017. Vol. 59. N 1. P. 1. doi 10.1080/01614940.2016.126308843
- 16. Ji X., Yang J., Zhao N. // Inorg. Chem. Commun. 2021. Vol. 134. P. 109061. doi 10.1016/j.inoche.2021.109061
- 17. Aresta M., Dibenedetto A., Nocito F., Ferragina C. // J. Catal. 2009. Vol. 268. N 1. P. 106. doi 10.1016/j.jcat.2009.09.008
- 18. Li Y., Liu H., Zheng Z., Fu Z., He D., Zhang Q. // Ind. Eng. Chem. Res. 2022. Vol. 61. N 17. P. 5698. doi 10.1021/acs.iecr.2c00667
- 19. Wang H., Cui Y., Shi J., Tao X., Zhu G. // Appl. Catal. (B). 2023. Vol. 330. P. 122457. doi 10.1016/j.apcatb.2023.122457
- 20. Grotjahn D.B. // Dalton Trans. 2008. Vol. 46. P. 6497. doi 10.1039/b809274e
- 21. Layek S., Agrahari B., Kumari S., Anuradha, Pathak D.D. // Catal. Lett. 2018. Vol. 148. P. 2675. doi 10.1007/s10562-018-2449-6
- 22. Sadek K.U., Mekheimer R.A., Abd‐Elmonem M., Elnagdi M.H. // Appl. Organomet. Chem. 2020. Vol. 34. N 2. P. e5315. doi 10.1002/aoc.5315
- 23. Bifunctional Molecular Catalysis / Eds I. Takao, S. Masakatsu. London: Springer, 2011. 210 p.
- 24. Non-covalent Interactions in the Synthesis and Design of New Compounds / Eds M.M. Abel, A.J.L. Pombeiro, K.T. Mahmudov, N. Maximilian, M.N. Kopylovich. Hoboken: Wiley, 2016. 460 p.
- 25. Kricheldorf H.R., Damrau D.O. // Macromol. Chem. Phys. 1997. Vol. 198. N 6. P. 1753. doi 10.1002/macp.1997.021980605
- 26. Kreiser‐Saunders I., Kricheldorf H.R. // Macromol. Chem. Phys. 1998. Vol. 199. N 6. P. 1081. doi 10.1002/(SICI)1521-3935(19980601)199:63.0.CO;2-2
- 27. Zhang C., Liao L., Gong S. // J. Appl. Polym. Sci. 2008. Vol. 110. N 2. P. 1236. doi 10.1002/app.28651
- 28. Zhang Y., Qi Y., Yin Y., Li A., Zheng Q., Liang W. // ACS Sustain. Chem. Eng. 2020. Vol. 8. N 7. P. 2865. doi 10.1021/acssuschemeng.9b06987
- 29. Zheng M., Zeng S., Wang X., Gao X., Wang Q., Xu J., Deng F. // Magn. Reson. Lett. 2022. Vol. 2. N 4. P. 266. doi 10.1016/j.mrl.2022.09.002
- 30. Bakó I., Grósz T., Pálinkás G., Bellissent-Funel M.C. // J. Chem. Phys. 2003. Vol. 118. N 7. P. 3215. doi 10.1063/1.1536163
- 31. Baev A.K. Specific Intermolecular Interactions of Organic Compounds. Heidelberg: Springer, 2012. 434 p.
- 32. Samuilov A., Samuilov Y. // New J. Chem. 2023. Vol. 47. N 38. P. 18027. doi 10.1039/D3NJ04052F
- 33. Bhadauria S., Saxena S., Prasad R., Sharma P., Prasad R., Dwivedi R. // Eur. J. Chem. 2012. Vol. 3. N 2. P. 235. doi 10.5155/eurjchem.3.2.235‐240.460
- 34. Liu Sh. Exploring Chemical Concepts Through Theory and Computation. Weinheim: Wiley-VCH, 2024. 592 p.
- 35. Smith M.B. Organic Chemistry. An Acid-Base Approach. Boca Raton: CRC Press, 2023. 692 p.
- 36. Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2013. Т. 49. № 1. С. 38
- 37. Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Rus. J. Org. Chem. 2013. Vol. 49. N 1 P. 28. doi 10.1134/S1070428013010065
- 38. Wannenmacher A., Lu W., Amarasinghe C., Cerasoli F., Donadio D., Ahmed M. // J. Chem. Phys. 2024. Vol. 160. N 14. P. 144303. doi 10.1063/5.0198162
- 39. Sun R., Bai S., Sun Q. // Mater. Today Commun. 2023. Vol. 34. P. 105262. doi 10.1016/j.mtcomm.2022.105262
- 40. Fakhrnasova D., Chimentao R.J., Medina F., Urakawa A. //ACS Catal. 2015. Vol. 5. N 11. P. 6284. doi 10.1021/acscatal.5b01575
- 41. Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2015. Т. 51. № 6. C. 853
- 42. Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Russ. J. Org. Chem. 2015. Vol. 51. N 6 P. 836. doi 10.1134/S1070428015060032
- 43. Deng L., Sun W., Shi Z., Qian W., Su Q., Dong L., He H.,Li Z., Cheng W. // J. Mol. Liq. 2020. Vol. 316. P. 113883. doi 10.1016/j.molliq.2020.11388
- 44. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G.,Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L. Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
- 45. Khan R.U., Tonner‐Zech R. // J. Comput. Chem. 2025. Vol. 46. N 8. P. e70082. doi 10.1002/jcc.70082
- 46. Praveen P.A., Saravanapriya D., Bhat SV., Arulkannan K., Kanagasekaran T. // Mater. Sci. Semicond. 2024. Vol. 173. P. 108159. doi 10.1016/j.mssp.2024.108159
- 47. Henderson B., Donnecke S., Genin S.N., Ryabinkin I.G., Irina Paci I. // J. Phys. Chem. (C). 2024. Vol. 128. N 38. P. 15899. doi 10.1021/acs.jpcc.4c03322
- 48. Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. 801 с.