RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Quantum-Chemical Study of the Reaction of Urea with Ethylene Glycol under Zinc Lactate Catalysis

PII
S30345596S0044460X25070077-1
DOI
10.7868/S3034559625070077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 7-8
Pages
305-318
Abstract
The reaction of urea with ethylene glycol to form ethylene carbonate catalyzed by zinc lactate was studied by the quantum-chemical density functional method B3LYP. The interaction proceeds in two stages. In the first stage, 2-hydroxyethylcarbamate is formed, which is transformed to ethylene carbonate and ammonia in the second stage. The stage limiting the reaction rate is the first stage. Four independent routes for the formation of 2-hydroxyethylcarbamate were revealed. Both monomeric and dimeric glycol molecules take part in its formation. The routes involving dimeric glycol molecules are kinetically and thermodynamically more favorable. In the zinc lactate-catalyzed transformation of 2-hydroxyethylcarbamate into ethylene carbonate, ethylene glycol acts as an effective co-catalyst. This stage is essentially reversible. The use of super stoichiometric amounts of ethylene glycol, the use of elevated temperatures, and the removal of ammonia from the reaction medium are factors that allow the successful production of ethylene carbonate by urea glycolysis under zinc lactate catalysis.
Keywords
квантово-химические расчеты мочевина этиленкарбонат катализ
Date of publication
04.07.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Yi W.B., Gao X., Zhang W. Biorenewable Solvents for Organic Synthesis. Sham: Springer, 2024. 48 p.
  2. 2. Yang J., Wang Y., Liu Y., Duan G., Liang Z., Han J., Huang Y., Han X., Zhang C., He S., Jiang S. // Fuel. 2025. Vol. 379. P. 133048. doi 10.1016/j.fuel.2024.133048
  3. 3. Ye S., Wang S., Lin L., Xiao M., Meng Y. // Adv. Ind. Eng. Polym. Res. 2019. Vol. 2. N 4. P. 143. doi 10.1016/j.aiepr.2019.09.004
  4. 4. Wang L., Li Y., Yang J., Wu Q., Liang S., Liu Z. // Int. J. Mol. Sci. 2024. Vol. 25. N 5. P. 2938. doi 10.3390/ijms25052938
  5. 5. Kotanen S., Wirtanen T., Mahlberg R., Anghelescu-Hakala A., Harjunalanen T., Willberg-Keyrilainen P., Laaksonen T., Sarlin E. // J. Appl. Polym. Sci. 2023. Vol. 140. N 24. P. e53964. doi 10.1002/app.53964
  6. 6. Ban J.L., Li S.Q., Yi C.F., Zhao J.-B., Zhang Z.-Y., Zhang J.-Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi 10.1007/s10118-018-2165-0
  7. 7. Seithümmer J., Knospe P., Reichmann R., Gutmann J.S., Hoffmann-Jacobsen K., Dornbusch M. // J. Coat. Technol. Res. 2023. Vol. 20, N 1. P. 173. doi 10.1007/s11998- 022-00665-3
  8. 8. Mundo F., Caillol S., Ladmiral V., Meier M.A. // ACS Sustain. Chem. Eng. 2024. Vol. 12. N 17. P. 6452. doi 10.1021/acssuschemeng.4c01274
  9. 9. Ryan T.A., Seddon E.A., Seddon K.R., Ryan C. Phosgene: and Related Carbonyl Halides. Amsterdam: Elsevier. 1996. 932 p.
  10. 10. Mishr V., Peter S.C. // Chem Catal. 2024. Vol. 4. N 1. P. 100796. doi 10.1016/j.checat.2023.100796
  11. 11. Brege A., Grignard B., Méreau R., Detrembleur C., Jerome C., Tassaing T. // Catalysts. 2022. Vol. 12. N 2. P. 124. doi 10.3390/catal12020124
  12. 12. Han C., Wang R., Shu C., Li X., Li H., Gao X. // React. Chem. Eng. 2022. Vol. 7. N 12. P. 2636. doi 10.1039/D2RE00289B
  13. 13. Mota C.J. // Curr. Org. Chem. 2024. Vol. 28. N 4. P. 1069. doi 10.2174/0113852728304402240403052919
  14. 14. Kotyrba Ł., Chrobok A., Siewniak A. // Catalysts. 2022. Vol. 12. N 3. P. 309. doi 10.3390/catal12030309
  15. 15. Shukla K., Srivastava V.C. // Catal. Rev. 2017. Vol. 59. N 1. P. 1. doi 10.1080/01614940.2016.126308843
  16. 16. Ji X., Yang J., Zhao N. // Inorg. Chem. Commun. 2021. Vol. 134. P. 109061. doi 10.1016/j.inoche.2021.109061
  17. 17. Aresta M., Dibenedetto A., Nocito F., Ferragina C. // J. Catal. 2009. Vol. 268. N 1. P. 106. doi 10.1016/j.jcat.2009.09.008
  18. 18. Li Y., Liu H., Zheng Z., Fu Z., He D., Zhang Q. // Ind. Eng. Chem. Res. 2022. Vol. 61. N 17. P. 5698. doi 10.1021/acs.iecr.2c00667
  19. 19. Wang H., Cui Y., Shi J., Tao X., Zhu G. // Appl. Catal. (B). 2023. Vol. 330. P. 122457. doi 10.1016/j.apcatb.2023.122457
  20. 20. Grotjahn D.B. // Dalton Trans. 2008. Vol. 46. P. 6497. doi 10.1039/b809274e
  21. 21. Layek S., Agrahari B., Kumari S., Anuradha, Pathak D.D. // Catal. Lett. 2018. Vol. 148. P. 2675. doi 10.1007/s10562-018-2449-6
  22. 22. Sadek K.U., Mekheimer R.A., Abd‐Elmonem M., Elnagdi M.H. // Appl. Organomet. Chem. 2020. Vol. 34. N 2. P. e5315. doi 10.1002/aoc.5315
  23. 23. Bifunctional Molecular Catalysis / Eds I. Takao, S. Masakatsu. London: Springer, 2011. 210 p.
  24. 24. Non-covalent Interactions in the Synthesis and Design of New Compounds / Eds M.M. Abel, A.J.L. Pombeiro, K.T. Mahmudov, N. Maximilian, M.N. Kopylovich. Hoboken: Wiley, 2016. 460 p.
  25. 25. Kricheldorf H.R., Damrau D.O. // Macromol. Chem. Phys. 1997. Vol. 198. N 6. P. 1753. doi 10.1002/macp.1997.021980605
  26. 26. Kreiser‐Saunders I., Kricheldorf H.R. // Macromol. Chem. Phys. 1998. Vol. 199. N 6. P. 1081. doi 10.1002/(SICI)1521-3935(19980601)199:63.0.CO;2-2
  27. 27. Zhang C., Liao L., Gong S. // J. Appl. Polym. Sci. 2008. Vol. 110. N 2. P. 1236. doi 10.1002/app.28651
  28. 28. Zhang Y., Qi Y., Yin Y., Li A., Zheng Q., Liang W. // ACS Sustain. Chem. Eng. 2020. Vol. 8. N 7. P. 2865. doi 10.1021/acssuschemeng.9b06987
  29. 29. Zheng M., Zeng S., Wang X., Gao X., Wang Q., Xu J., Deng F. // Magn. Reson. Lett. 2022. Vol. 2. N 4. P. 266. doi 10.1016/j.mrl.2022.09.002
  30. 30. Bakó I., Grósz T., Pálinkás G., Bellissent-Funel M.C. // J. Chem. Phys. 2003. Vol. 118. N 7. P. 3215. doi 10.1063/1.1536163
  31. 31. Baev A.K. Specific Intermolecular Interactions of Organic Compounds. Heidelberg: Springer, 2012. 434 p.
  32. 32. Samuilov A., Samuilov Y. // New J. Chem. 2023. Vol. 47. N 38. P. 18027. doi 10.1039/D3NJ04052F
  33. 33. Bhadauria S., Saxena S., Prasad R., Sharma P., Prasad R., Dwivedi R. // Eur. J. Chem. 2012. Vol. 3. N 2. P. 235. doi 10.5155/eurjchem.3.2.235‐240.460
  34. 34. Liu Sh. Exploring Chemical Concepts Through Theory and Computation. Weinheim: Wiley-VCH, 2024. 592 p.
  35. 35. Smith M.B. Organic Chemistry. An Acid-Base Approach. Boca Raton: CRC Press, 2023. 692 p.
  36. 36. Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2013. Т. 49. № 1. С. 38
  37. 37. Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Rus. J. Org. Chem. 2013. Vol. 49. N 1 P. 28. doi 10.1134/S1070428013010065
  38. 38. Wannenmacher A., Lu W., Amarasinghe C., Cerasoli F., Donadio D., Ahmed M. // J. Chem. Phys. 2024. Vol. 160. N 14. P. 144303. doi 10.1063/5.0198162
  39. 39. Sun R., Bai S., Sun Q. // Mater. Today Commun. 2023. Vol. 34. P. 105262. doi 10.1016/j.mtcomm.2022.105262
  40. 40. Fakhrnasova D., Chimentao R.J., Medina F., Urakawa A. //ACS Catal. 2015. Vol. 5. N 11. P. 6284. doi 10.1021/acscatal.5b01575
  41. 41. Самуилов А.Я., Валеев А.Р., Балабанова Ф.Б., Самуилов Я.Д., Коновалов А.И. // ЖОрХ. 2015. Т. 51. № 6. C. 853
  42. 42. Samuilov A.Ya., Valeev A.R., Balabanova F.B., Samuilov Ya.D., Konovalov A.I. // Russ. J. Org. Chem. 2015. Vol. 51. N 6 P. 836. doi 10.1134/S1070428015060032
  43. 43. Deng L., Sun W., Shi Z., Qian W., Su Q., Dong L., He H.,Li Z., Cheng W. // J. Mol. Liq. 2020. Vol. 316. P. 113883. doi 10.1016/j.molliq.2020.11388
  44. 44. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G.,Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L. Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
  45. 45. Khan R.U., Tonner‐Zech R. // J. Comput. Chem. 2025. Vol. 46. N 8. P. e70082. doi 10.1002/jcc.70082
  46. 46. Praveen P.A., Saravanapriya D., Bhat SV., Arulkannan K., Kanagasekaran T. // Mater. Sci. Semicond. 2024. Vol. 173. P. 108159. doi 10.1016/j.mssp.2024.108159
  47. 47. Henderson B., Donnecke S., Genin S.N., Ryabinkin I.G., Irina Paci I. // J. Phys. Chem. (C). 2024. Vol. 128. N 38. P. 15899. doi 10.1021/acs.jpcc.4c03322
  48. 48. Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. 801 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library