RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Halogenzincate Pyridinium Ionic Liquids as Precursors for the Synthesis of Zinc Sulfide Nanoparticles

PII
S3034559625010055-1
DOI
10.7868/S3034559625010055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 1-2
Pages
44-51
Abstract
Zinc sulfide nanoparticles, quantum dots, were synthesized from halogenzincate 1-alkylpyridinium ionic liquids with different alkyl chain lengths in the cation. The average sizes of zinc sulfide nanoparticles were determined by UV spectroscopy, X-ray diffraction, atomic force microscopy, and scanning electron microscopy. The effect of the structure of halogenzincate 1-alkylpyridinium ionic liquids on the size of zinc sulfide nanoparticles was studied.
Keywords
квантовые точки галогенцинкатные ионные жидкости наночастицы сульфида цинка
Date of publication
17.01.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Weng J., Ren J. // Curr. Med. Chem. 2006. Vol. 13. P. 897. doi 10.2174/092986706776361076
  2. 2. Das A., Snee P.T. // ChemPhysChem. 2016. Vol. 17. P. 598. doi 10.1002/cphc.201500837
  3. 3. Nune S.K., Gunda P., Thallapally P.K., Lin Y.-Y., Forrest M.L. Berkland C.J. // Expert Opin. Drug Deliv. 2009. Vol. 6. P. 1175. doi 10.1517/17425240903229031
  4. 4. Carey G.H., Abdelhady A.L., Ning Z., Thon S.M., Bakr O.M., Sargent E.H. // Chem. Rev. 2015. Vol. 115. P. 12732. doi 10.1021/acs.chemrev.5b00063
  5. 5. Rafailov E.U., Cataluna M.A., Sibbet W. // Nat. Photon. 2007. Vol. 1. P. 395. doi 10.1038/nphoton.2007.120
  6. 6. Chuang P.-H., Lin C.C., Liu R.-S. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. P. 15379. doi 10.1021/am503889z
  7. 7. Ji X., Zheng J., Xu J., Rastogi V.K., Cheng T.-C., DeFrank J.J., Leblanc R.M. // J. Phys. Chem. (B). 2005. Vol. 109. P. 3793. doi 10.1021/jp044928f
  8. 8. Frecker T., Bailey D., Arzeta-Ferrer X., McBride J., Rosenthal S.J. // ECS J. Solid State Sci. Technol. 2016. Vol. 5. P. R3019. doi 10.1149/2.0031601jss
  9. 9. Peng W.Q., Qu S.C., Cong G.W., Zhang X.Q., Wang Z.G. // J. Cryst. Growth. 2005. Vol. 282. P. 179. doi 10.1016/ j.jcrysgro.2005.05.005
  10. 10. Ming F., Hong J., Xu X., Wang Z. // RSC Adv. 2016. Vol. 6. P. 31551. doi 10.1039/C6RA02840C
  11. 11. Tiwary C.S., Kumbhakar P., Mitra A.K., Chattopadhyay K. // J. Lumin. 2009. Vol. 129. P. 1366. doi 10.1016/ j.jlumin.2009.07.004
  12. 12. Wasserscheid P., Welton T. Ionic Liquid in Synthesis. Wiley: New York, 2003. doi 10.1002/9783527621194
  13. 13. Ma Z., Yu J., Dai S. // Adv. Mater. 2010. Vol. 22. P. 261. doi 10.1002/adma.200900603
  14. 14. Dolan A., Atkin R., Warr G.G. // Chem. Sci. 2015. Vol. 6. P. 6189. doi 10.1039/C5SC01202C
  15. 15. Rao K.S., Bharmoria P., Trivedi T.J., Kumar A. Self-assembly of surface-active ionic liquids in aqueous medium, in ionic liquid-based surfactant science: Formulation, Characterization, and Applications / Eds B.K. Paul, S.P. Moulik. Hoboken: John Wiley & Sons, Inc., 2015.
  16. 16. Ueki T., Watanabe M. // Macromolecules. 2008. Vol. 41. P. 3739. doi 10.1021/ma800171k
  17. 17. Schleicher J., Scurto A.M. // Green Chem. 2009. Vol. 11. P. 694. doi 10.1039/B808364A
  18. 18. Sekhar M.C., Santhosh K., Kumar J.P., Mondal N., Soumya S., Samanta A. // J. Phys. Chem. (C). 2014. Vol. 118. P. 18481. doi 10.1021/jp507271t
  19. 19. Wang Q.-T., Wang X.-B., Lou W.-J., Hao J.-C. // ChemPhysChem. 2009. Vol. 10. P. 3201. doi 10.1002/cphc.200900566
  20. 20. Leua M., Campbella P., Mudring A.-V. // Green Chem. Let. Rev. 2021. Vol. 14. P. 128. doi 10.1080/ 17518253.2021.1875057
  21. 21. Wu Y., Hao X., Yang J., Tian F., Jiang M. // Mater. Lett. 2006. Vol. 60. P. 2764. doi 10.1016/j.matlet.2006.01.106
  22. 22. Jiang Y., Zhu Y.-J. // Chem. Lett. 2004. Vol. 33. P. 1390. doi 10.1246/cl.2004.1390
  23. 23. Goharshadi E.K., Sajjadi S.H., Mehrkhah R., Nancarrow P. // Chem. Eng. J., 2012. Vol. 209. P. 113. doi 10.1016/j.cej.2012.07.131
  24. 24. Goharshadi E.K., Mehrkhah R., Nancarrow P. // Mater. Sci. Semicond. Process. 2013. Vol. 16. P. 356. doi 10.1016/j.mssp.2012.09.012
  25. 25. Shikha K., Kang P., Singh T. // New J. Chem. 2017. Vol. 41. P. 7407. doi 10.1039/C7NJ01373F
  26. 26. Chen Y., Zhang X., Jia C., Su Y., Li Q. // J. Phys. Chem. (C). 2009. Vol. 113. N 6. P. 2263. doi 10.1021/jp8091122
  27. 27. Журавлев О.Е., Пресняков И.А., Ворончихина Л.И. // ЖПХ. 2015. Т. 88. № 6. С. 848; Zhuravlev O.E., Presnyakov I.A., Voronchikhina L.I. // Russ. J. Appl. Chem. 2015. Vol. 88. N 6. P. 914. doi 10.1134/S1070427215060018
  28. 28. West A.R. Solid State Chemistry and its Applications. New York: John Wiley and Sons, 2014. 592 p.
  29. 29. Peddis D., Orrù F., Ardu A., Cannas C., Musinu A., Piccaluga G. // Chem. Mater. 2012. Vol. 24. N 6. P. 1062. doi 10.1021/cm203280y
  30. 30. Muscas G., Singh G., Glomm W.R., Mathieu R., Kumar P.A., Concas G., Agostinelli E., Peddis D. // Chem. Mater. 2015. Vol. 27. N 6. P. 1982. doi 10.1021/cm5038815
  31. 31. Журавлев О.Е., Веролайнен Н.В., Ворончихина Л.И. // ЖОХ. 2010. Т. 80. № 5. С. 854; Zhuravlev O.E., Verolainen, N.V., Voronchikhina, L.I. // Russ. J. Gen. Chem. 2010. Vol. 80. N 5. P. 1025. doi 10.1134/S1070363210050294
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library