- PII
- 10.31857/S0044460X24100058-1
- DOI
- 10.31857/S0044460X24100058
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 10
- Pages
- 1058-1068
- Abstract
- Three schemes of interclass prediction of the activity of a number of bipharmacophoric butyrylcholinesterase inhibitors were studied using QSAR modeling. Using machine learning methods (multiple linear regression, random forest, support vector machine and Gaussian process), QSAR models with satisfactory statistical characteristics were constructed. Based on them, rational and random interclass prediction schemes were studied. It was found that these schemes complement each other and their relative efficiency was assessed.
- Keywords
- межклассовый прогноз активности бутирилхолинэстераза QSAR
- Date of publication
- 15.10.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 39
References
- 1. Schlander M., Hernandez-Villafuerte K., Cheng C.Y., Mestre-Ferrandiz J., Baumann M. // Pharmacoeconomics. 2021. Vol. 39. P. 1243. doi 10.1007/s40273-021-01065-y
- 2. Sadybekov A.V., Katritch V. // Nature. 2023. Vol. 616. P. 673. doi 10.1038/s41586-023-05905-z
- 3. Doytchinova I. // Molecules. 2022. Vol. 27. P. 1496. doi 10.3390/molecules27051496
- 4. Niazi S.K., Mariam Z. // Pharmaceuticals. 2024. Vol. 17. P. 22. doi 10.3390/ph17010022
- 5. Baig M.H., Ahmad K., Roy S., Ashraf J.M., Adil M., Siddiqui M.H., Khan S., Kamal M.A., Provazník I., Choi I. // Curr. Pharm. Des. 2016. Vol. 22. P. 572. doi 10.2174/ 1381612822666151125000550
- 6. Зефирова О.Н., Зефиров Н.С. // Вестн. Московск. унив. Сер. 2. Химия. 2000. Т. 41. С. 103.
- 7. Hu Y., Stumpfe D., Bajorath J. // J. Med. Chem. 2017. Vol. 60. P. 1238. doi 10.1021/acs.jmedchem.6b01437
- 8. Stojanović L., Popović M., Tijanić N., Rakočević G., Kalinić M. // J. Chem. Inf. Model. 2020. Vol. 60. P. 4629. doi 10.1021/acs.jcim.0c00622
- 9. Acharya A., Yadav M., Nagpure M., Kumaresan S., Guchhait S.K. // Drug Discov. Today. 2024. Vol. 29. Article no. 103845. doi 10.1016/j.drudis.2023.103845
- 10. Wang Y., Jia S., Wang F., Jiang R., Yin X., Wang S., Jin R., Guo H., Tang Y., Wang Y. // Int. J. Mol. Sci. 2024. Vol. 25. Article no. 7434. doi 10.3390/ijms25137434
- 11. Floresta G., Rescifina A., Marrazzo A., Dichiara M., Pistarà V., Pittalà V., Prezzavento O., Amata E. // Eur. J. Med. Chem. 2017. Vol. 139. P. 884. doi 10.1016/ j.ejmech.2017.08.053
- 12. Škuta C., Cortés-Ciriano I., Dehaen W., Kříž P., van Westen G.J.P., Tetko I.V., Bender A., Svozil D. // J. Cheminform. 2020. Vol. 12. P. 39. doi 10.1186/s13321-020-00443-6
- 13. Zheng S., Lei Z., Ai H., Chen H., Deng D., Yang Y. // J. Cheminform. 2021. Vol. 13. P. 87. doi 10.1186/s13321-021-00565-5
- 14. Ryszkiewicz P., Malinowska B., Schlicker E. // Pharmacol. Rep. 2023. Vol. 75. P. 755. doi 10.1007/s43440-023-00501-4
- 15. Sánchez-Tejeda J.F., Sánchez-Ruiz J.F., Salazar J.R., Loza-Mejía M.A. // Front. Chem. 2020. Vol. 8. P. 176. doi 10.3389/fchem.2020.00176
- 16. Albertini C., Salerno A., de Sena Murteira Pinheiro P., Bolognesi M.L. // Med. Res. Rev. 2021. Vol. 41. P. 2606. doi 10.1002/med.21699
- 17. Zhou S., Huang G. // Biomed. Pharmacother. 2022. Vol. 146. Article no. 112556. doi 10.1016/j.biopha. 2021.112556
- 18. Greig N.H., Lahiri D.K., Sambamurti K. // Int. Psychogeriatr. 2002. Vol. 14. P. 77. doi 10.1017/s1041610203008676
- 19. Makhaeva G.F., Shevtsova E.F., Boltneva N.P., Lushchekina S.V., Kovaleva N.V., Rudakova E.V., Bachurin S.O., Rudy J. Richardson R.J. // Chem. Biol. Interact. 2019. Vol. 308. P. 224. doi 10.1016/j.cbi.2019.05.020
- 20. Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., Boltneva N.P., Lushchekina S.V., Gabrelyan A.V., Zamoyski V.L., Dubova L.G., Rudakova E.V., Fisenko V.P., Bovina E.V., Richardson R.J. // Molecules. 2021. Vol. 26. P. 5527. doi 10.3390/molecules26185527
- 21. Kiralj R., Ferreira M.M.C. // J. Braz. Chem. Soc. 2009. Vol. 20. P. 770. doi 10.1590/S0103-50532009000400021
- 22. Tropsha A., Gramatica P., Gombar V.K. // QSAR Comb. Sci. 2003. Vol. 22. P. 69. doi 10.1002/qsar.200390007
- 23. Kumar S., Manoharan A., Jayalakshmi J., Abdelgawad M.A., Mahdi W.A., Alshehri S., Ghoneim M.M., Pappachen L.K., Zachariah S.M., Aneesh T.P., Mathew B. // RSC Adv. 2023.Vol. 13. P. 9513. doi 10.1039/d3ra00526g
- 24. Pang X., Fu H., Yang S., Wang L., Liu A.-L., Wu S., Du G.-H. // Molecules. 2017. Vol. 22. P. 1254. doi 10.3390/molecules22081254
- 25. Fortran Numerical Library. https://developer.nvidia.com/imsl-fortran-numerical-library?display=default
- 26. Random Forest. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_examples/prog.f
- 27. Suykens J.A.K., Vandewalle J. // Neural Process. Lett. 1999. Vol. 9. P. 293. doi 10.1023/A:1018628609742
- 28. Gaussian Processes for Machine Learning. http://gaussianprocess.org/gpml/
- 29. Landrum G.A., Riniker S. // J. Chem. Inf. Model. 2024. Vol. 64. P. 1560. doi 10.1021/acs.jcim.4c00049
- 30. Mitra I., Saha A., Roy K. // Mol. Simul. 2010. Vol. 36. P. 1067. doi 10.1080/08927022.2010.503326
- 31. Kubinyi H. // Quant. Struct. Act. Relat. 1994. Vol. 13. P. 285. doi 10.1002/qsar.19940130306
- 32. Willett P., Barnard J.M., Downs G.M. // J. Chem. Inf. Comput. Sci. 1998. Vol. 38. P. 983. doi 10.1021/ci9800211
- 33. Раздольский А.Н., Казаченко В.П., Страхова Н.Н., Григорьев В.Ю. // Современные наукоемкие технологии. 2023. Вып. 10. С. 63. doi 10.17513/snt.39792
- 34. Trepalin S.V., Razdolskii A.N., Raevskii O.A. // Pharm. Chem. J. 2000. Vol. 34. P. 650. doi 10.1023/ A:1010499601434