RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Solubility of Curcumin in Water and Aqueous Solutions of Tetradecyltriphenylphosphonium Bromide with Formation of Protomicelles

PII
10.31857/S0044460X24090063-1
DOI
10.31857/S0044460X24090063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 9
Pages
987-999
Abstract
By spectrophotometry studied the interaction of curcumin, a biologically important molecule, with tetradecyltriphenylphosphonium bromide in an aqueous environment depending on the concentration of surfactants in the premicellar and micellar ranges. Experiments were carried out with saturated solutions of curcumin under conditions of thermodynamic equilibrium of the solution with the dye precipitate. The solubility of curcumin in water has been clarified (about 2 µM). It has been shown that the process of solubilization of curcumin begins in the premicellar region of surfactants, is enhanced in the presence of adsorption protomicelles, but is most effective in the presence of ordinary micelles. The extinction coefficients of curcumin monomers in dimethyl sulfoxide, water and micellar solutions are determined. Based on experimental data, the limiting value of the solubilization capacity tetradecyltriphenylphosphonium bromide with respect to curcumin is calculated. The conductometry was used to determine the values of the critical micelle concentration (CMC) of the studied surfactant in the presence and absence of curcumin and confirm the theoretical conclusion that the CMC of the surfactants is reduced by the solubilizate.
Keywords
куркумин бромид тетрадецилтрифенилфосфония спектр поглощения адсорбционные протомицеллы мицеллы солюбилизация
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Русанов А.И., Мовчан Т.Г., Плотникова Е.В. // Докл. АН. Химия, науки о материалах. 2020. Т. 495. С. 60. doi 10.31857/S2686953520060126; Rusanov A.I., Movchan T.G., Plotnikova E.V. // Dokl. Phys. Chem. 2020. Vol. 495. P. 181. doi 10.1134/S0012501620120027
  2. 2. Мовчан Т.Г., Русанов А.И., Плотникова Е.В. // Коллоид. ж. 2021. Т. 83. С. 335. doi 10.31857/S0023291221030125; Movchan T.G., Rusanov A.I., Plotnikova E.V. // Colloid J. 2021. Vol. 83. N 3. P. 356. doi 10.1134/S1061933X21030121
  3. 3. Zhu P.W., Napper D.H. // Colloids Surf. (A). 1996. Vol. 113. P. 145. doi 10.1016/0927-7757(96)03520-0
  4. 4. Мовчан Т.Г., Русанов А.И., Плотникова Е.В. // Коллоид. ж. 2021. Т. 83. С. 443. doi 10.31857/S0023291221040066; Movchan T.G., Rusanov A.I., Plotnikova E.V. // Colloid J. 2021. Vol. 83. N 3. P. 468. doi 10.1134/S1061933X21040062
  5. 5. Rusanov A.I., Movchan T.G., Plotnikova E.V. // Molecules. 2022. Vol. 27. P. 7667. doi 10.3390/molecules27227667
  6. 6. Ghoran S.H., Calcaterra A., Abbasi M., Taktaz F., Nieselt K., Babaei E. // Molecules. 2022. Vol. 27. P. 5236. doi 10.3390/molecules27165236
  7. 7. Zahra M., Hadi F., Maqbool T., Sultana H., Abid F., Aslam M.A., Ahmad M., Muhammad Sh., ul Hassan M.O. // J. Health Rehab. Res. 2024. Vol. 4. N 2. P. 1738. doi 10.61919/jhrr.v4i2.1159
  8. 8. Karimpour M., Hosseinpour Feizi M.A., Mahdavi M., Krammer B., Verwanger T., Najafi F., Babaei E. // Phytomedicine. 2019. Vol. 57. P. 183.
  9. 9. Kazakova O., Lipkovska N., Barvinchenko V. // Spectrochim. Acta (A). 2022. Vol. 277. P. 121287. doi 10.1016/ j.saa.2022.121287
  10. 10. Priyadarsini K.I. // Molecules. 2014. Vol. 19. P. 20091. doi 10.3390/molecules191220091
  11. 11. Khopde S.M., Priyadarsini K.I., Palit D.K., Mukherjee T. // Photochem. Photobiol. 2000. Vol. 72. N 5. P. 625. doi 10.1562/0031-8655(2000)0722.0.co;2
  12. 12. Salem M., Rohani S., Gillies E.R. // RSC Adv. 2014. Vol. 4. P. 10815. doi 10.1039/c3ra46396f
  13. 13. Mondal S., Ghosh S., Satya P., Moulik. S.P. // J. Photochem. Photobiol. (B). 2016. Vol. 158. P. 212. doi 10.1016/ j.jphotobiol.2016.03.004
  14. 14. Chignell C.F., Bilski P., Reszka K.J., Motten A.G., Sik R.H., Dahl T.A. // Photochem. Photobiol. 1994. Vol. 59. N 3. P. 295. doi 10.1111/j.1751-1097.1994.tb05037.x
  15. 15. Соколова Ю.Д., Челнакова П.Н., Коновалов Е.В. // Universum: Химия и биология: электрон. научн. журн. 2016. № 12(30).
  16. 16. Aboudiab B., Tehrani-Bagha A.R., Patra D. // Colloids Surf. (A). 2020. Vol. 592. P. 124602. doi 10.1016/ j.colsurfa.2020.124602
  17. 17. Tonnesen H.H., Masson M., Loftsson Th. // Int. J. Pharm. 2002. Vol. 244. P. 127. doi 10.1016/S037-5173(02)00323-X
  18. 18. Kharat M., Du Z., Zhang G., McClements D.J. // J. Agric. Food Chem. 2017. Vol. 65. P. 1525. doi 10.1021/acs.jafc.6b04815
  19. 19. Mohanty S., Tirkey B., Jena S.R., Samanta L., Subuddhi U. // Langmuir. 2023. Vol. 39. P. 1852. doi 10.1021/acs.langmuir.2c02797
  20. 20. Barvinchenko V., Kazakova O., Lipkovska N. // J. Surfact Deterg. 2024. P. 1. doi 10.1002/jsde.12756
  21. 21. Sharma R., Jani D. // Phys. Chem. Tenside Surf. Det. 50. 2013. Vol. 4. doi 10.3139/113.110261
  22. 22. Dan Ke-D., Wang X., Yang Q., Niu Y., Chai S., Chen Z., An X., Shen W. // Langmuir. 2011. Vol. 27. P. 14112. doi 10.1021/la203592j
  23. 23. Гайнанова Г.А., Валеева Ф.Г., Кушназарова Р.А., Бекмухаметова А.М., Захаров С.В., Миргородская А.Б., Захарова Л.Я. // ЖФХ. 2018. Т. 92. № 7. С. 1158; Gaynanova G.A., Valeeva F.G., Kushnazarova R.A., Bekmukhametova A.M., Zakharov S.V., Mirgorodskaya A.B., Zakharova L.Ya. // Russ. J. Phys. Chem. (A). 2018. Vol. 92. P. 1400. doi 10.1134/S0036024418070129
  24. 24. Наумова К.А., Дементьева О.В., Зайцева А.В., Рудой В.М. // Коллоид. ж. 2019. Т. 81. № 4. С. 478; Naumova K.A., Dementʼeva O.V., Zaitseva A.V., Rudoy V.M. // Colloid J. 2019. Vol. 81. N 4. P. 416. doi 10.1134/S1061933X19040094
  25. 25. Dutta A., Boruah B., Manna A.K., Gohain B., Saikia P.M., Dutta R.K. // Spectrochim. Acta (A). 2013. Vol. 104. P. 150. doi 10.1016/j.saa.2012.11.048
  26. 26. Kumar A., Kansal S.K., Chaudhary G.R., Mehta S.K. // J. Chem. Thermodyn. 2016. Vol. 93. P. 115. doi 10.1016/ j.foodchem.2015.12.077
  27. 27. Mondal S., Ghosh S. // Chem. Phys. Lett. 2021. Vol. 762. P. 138144. doi 10.1016/j.cplett.2020.138144
  28. 28. Gainanova G.A., Vagapova G.J., Syakaev V.V., Ibragimova A.R., Valeeva F.G., Tudriy E.V., Galkina I.V., Kataeva O.N., Zakharova L.Ya., Latypov Sh.K., Konovalov A.I. // J. Colloid Int. Sci. 2012. Vol. 367. P. 327. doi 10.1016/j.jcis.2011.10.074
  29. 29. Орлова О.В., Сидуллина С.А., Егорова С.Н. // Медицинские науки. 2013. Т. 5. С. 115.
  30. 30. Leung M.H.M., Colangelo H., Kee T.W. // Langmuir. 2008. Vol. 24. P. 5672. doi 10.1021/la800780w
  31. 31. Русанов А.И. // Коллоид. ж. 2021. Т. 83. С. 98; Rusanov A.I. // Colloid J. 2021. Vol. 83. P. 127. doi 10.1134/S1061933X20060113
  32. 32. Васильева Э.А., Валеева Ф.Г., Елисеева О.Е., Лукашенко С.С., Сайфутдинова М.Н., Захаров В.М., Гаврилова Е.Л., Захарова Л.Я. // Макрогетероциклы. 2017. Т. 10. Вып. 2. С. 182; Vasilieva E.A., Valeeva F.G., Yeliseeva O.E., Lukashenko S.S., Saifutdinova M.N., Zakharov V.M., Gavrilova E.L., Zakharova L.Ya. // Macroheterocycles. 2017. Vol. 10. P. 182. doi 10.6060/mhc170509v
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library