RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis of Tetraoxacalixarenes Based on Ethyl Pentafluorobenzoate. Effect of Solvent Polarity and Nature of the Base

PII
10.31857/S0044460X24070068-1
DOI
10.31857/S0044460X24070068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 7
Pages
843-855
Abstract
The direction of reaction of ethyl pentafluorobenzoate with orcinol depends largely on the polarity of the solvent and the nature of the base. In acetonitrile the reaction proceeds exclusively in the para-position of ethyl pentafluorobenzoate, while in the dioxane–Na2CO3 system the products of substitution of fluorine atoms in the ortho-position are predominantly formed. The reaction of triphenyl with orcinol in the dioxane–K2CO3 system leads to the formation of a mixture of possible fluorine-containing isomeric tetraoxacalixarenes. The corresponding fluorine-containing tetraoxacalixarenes with carboxyl group were obtained by hydrolysis of ester groups.
Keywords
фторсодержащие тетраоксакаликсарены этилпентафторбензоат орцинол рентгеновская дифракция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Maes W., Dehaen W. // Chem. Soc. Rev. 2008. Vol. 37. N 11. P. 2393. doi 10.1039/B718356A
  2. 2. Wang M.X. // Chem. Commun. 2008. N 38. P. 4541. doi 10.1039/B809287G
  3. 3. Wang M.X. // Acc. Chem. Res. 2012. Vol. 45. N 2. P. 182. doi 10.1021/ar200108c
  4. 4. Hudson R., Katz J.L. In: Calixarenes and Beyond / Eds. P. Neri, J.L. Sessler, M.X. Wang. Cham: Springer International Publishing, 2016. P. 399. doi 10.1007/ 978-3-319-31867-7
  5. 5. Dey S., Kumar A., Mondal P.K., Chopra D., Roy R., Jindani S., Ganguly B., Mayya C., Bhatia D., Jain V.K. // Sci. Rep. 2022. Vol. 12. P. 17119. doi 10.1038/s41598-022-21407-w
  6. 6. Yang H.-B., Wang D.-X., Wang Q.-Q., Wang M.-X. // J. Org. Chem. 2007. Vol. 72. N 10. P. 3757. doi 10.1021/jo070001a
  7. 7. Sang Q., Yang J. // Chin. J. Chem. 2012. Vol. 30. N 7. P. 1410. doi 10.1002/cjoc.201200057
  8. 8. Panchal M., Kongor A., Athar M., Mehta V., Jha P.C., Jain V.K. // New J. Chem. 2018. Vol. 42. P. 311. doi 10.1039/C7NJ02828H
  9. 9. Dong P.-P., Liu Y.-Y., Peng Q.-C., Li H.-Y., Li K., Zang S.-Q., Tang B.-Z. // Dalton Trans. 2023. Vol. 52. N 7. P. 1913. doi 10.1039/d2dt03382h
  10. 10. Luo N., Ao Y.-F., Wang D.-X., Wang Q.-Q. // Chem. Asian J. 2021. Vol. 16. N 22. P. 3599. doi 10.1002/asia.202100920
  11. 11. Genc H.N. // RSC Adv. 2019. Vol. 9. N 36. P. 2163. doi 10.1039/C9RA03029H
  12. 12. Sommer N., Staab H.A. // Tetrahedron. Lett. 1966. Vol. 7. N 25. P. 2837. doi 10.1016/S0040-4039(01)99870-3
  13. 13. Ma J.-X., Fang X., Xue M., Yang Y. // Org. Biomol. Chem. 2019. Vol. 17. N 20. P. 5075. doi 10.1039/C9OB00613C
  14. 14. Wang D.-X., Wang Q.-Q., Han Y.-C., Wang Y.-L., Huang Z.-T., Wang M.-X // Chem. Eur. J. 2010. Vol. 16. N 44. P. 13053. doi 10.1002/chem.201002307
  15. 15. Chambers R.D., Hoskin P.R., Kenwright A.R., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // Org. Biomol. Chem. 2003. Vol. 1. N 12. P. 2137. doi 10.1039/B303443G
  16. 16. Chambers R.D., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // J. Fluor. Chem. 2004. Vol. 125. N 5. P. 715. doi 10.1016/j.jfluchem.2003.12.007
  17. 17. Kovtonyuk V.N., Gatilov Y.V. // J. Fluor. Chem. 2017. Vol. 199. P. 52. doi 10.1016/j.jfluchem.2017.04.010
  18. 18. Kovtonyuk V.N., Gatilov Y.V., Salnikov G.E., Amosov E.V. // J. Fluor. Chem. 2019. Vol. 222–223. P. 59. doi 10.1016/ j.jfluchem.2019.04.011
  19. 19. Brook D.M. // J. Fluorine Chem. 1997. Vol. 86. N 1. P. 1. doi 10.1016/S0022-1139(97)00006-7
  20. 20. Кобрина Л.С., Фурин Г.Г., Якобсон Г.Г. // ЖОрХ 1970. Т. 6. № 3. С. 512.
  21. 21. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V. // J. Fluor. Chem. 2022. Vol. 261–262. Art. no. 110022. doi 10.1016/j.jfluchem.2022.110022
  22. 22. Ковтонюк В.Н., Хань Х., Гатилов Ю.В. // ЖОрХ 2020. Т. 56. № 7. С. 1030; Kovtonyuk V.N., Han H.-Z., Gatilov Y.V. // Russ. J. Org. Chem. 2020. Vol. 56. N 7. P. 1153. doi 10.1134/S1070428020070052
  23. 23. Rossom W.V., Kishore L., Robeyns K., Meervelt L.V., Dehaen W., Maes W. // Eur. J. Org. Chem. 2010. N 21. P. 4122. doi 10.1002/ejoc.201000460
  24. 24. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V., Nefedov A.A. // J. Fluor. Chem. 2024. Vol. 273. Art. no. 110235. doi 10.1016/j.jfluchem.2023.110235
  25. 25. Wang Q.-Q., Wang D.-X., Zheng Q.-Y., Wang M.-X. // Org. Lett. 2007. Vol. 9. N 15. P. 2847. doi 10.1021/ol0710008
  26. 26. Pan S., Wang D.-X., Zhao L., Wang M.-X. // Tetrahedron 2012. Vol. 68. N 46. P. 9464. doi 10.1016/j.tet.2012.08.069
  27. 27. Bruker AXS Inc. APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11); Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000–2012.
  28. 28. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. Pt. 1. P. 3. doi 10.1107/S2053229614024218
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library