RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

DFT modeling of the oxygen electroreduction reaction on SiN3-doped carbon nanotubes

PII
10.31857/S0044460X24050123-1
DOI
10.31857/S0044460X24050123
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 5
Pages
649-658
Abstract
The thermodynamic features and mechanism of the electrocatalytic oxygen reduction reaction were studied using the revPBE0-D3(BJ)/Def2-TZVP method on the example of (6,6)-armchair carbon nanotube doped with a tricoordinated silicon atom and nitrogen atoms of pyridinic and graphitic nature. Irreversible oxidation of the silicon center as a result of the formation of stable oxygen-containing adsorbates was shown. It was found that Si-poisoned structures are capable of participating in the catalysis of the target reaction along two- and four-electron routes at high overpotentials. For a nanotube doped simultaneously with pyridinic and graphitic nitrogens the potential possibility of eliminating the silicon atom from the catalyst composition in the form of orthosilicic acid and the participation of a silicon-free nitrogen-doped framework in the oxygen electroreduction reaction, for which the stage of tautomerization of pyridin-2(1H)-one to pyridin-2-ol is the limiting step was shown.
Keywords
Si N-допирование реакция восстановления кислорода углеродные нанотрубки катализаторы квантово-химические расчеты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Wang Y.-J., Long W., Wang L., Yuan R., Ignaszak A., Fang B., Wilkinson D.P. // Energy Environ. Sci. 2018. Vol. 11. P. 258. doi 10.1039/C7EE02444D
  2. 2. Daud W.R.W., Rosli R.E., Majlan E. H., Hamid S.A.A., Mohamed R., Husaini T. // Renew. Energy. 2017. Vol. 113. P. 620. doi 10.1016/j.renene.2017.06.027
  3. 3. Popov B.N., Lee J.-W., Kriston A., Kim T. // J. Electrochem. Soc. 2020. Vol. 167. N 5. P. 054512. doi 10.1149/1945-7111/ab6bc6
  4. 4. Hu X., Yang B., Ke S., Liu Y., Fang M., Huang Z., Min X. // Energy Fuels. 2023. Vol. 37. N 16. P. 11532. doi 10.1021/acs.energyfuels.3c01265
  5. 5. Hao Y.M., Nakajima H., Inada A., Sasaki K., Ito K. // Electrochim. Acta. 2019. Vol. 301. P. 274. doi 10.1016/ j.electacta.2019.01.108
  6. 6. Wang Y., Wang D., Li Y. // SmartMat. 2021. Vol. 2. P. 56. doi 10.1002/smm2.1023
  7. 7. Sui S., Wang X., Zhou X., Su Y., Riffat S., Liu C.-j. // J. Mater. Chem. (A). 2017. Vol. 5. P. 1808. doi 10.1039/C6TA08580F
  8. 8. Xia W., Mahmood A., Liang Z., Zou R., Guo S. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 2650. doi 10.1002/anie.201504830
  9. 9. Shantharaja, Giddaerappa, Sannegowda L.K. // Electrochimica Acta. 2023. Vol. 456. P. 142405. doi 10.1016/ j.electacta.2023.142405
  10. 10. Shi Z., Yang W., Gu Y., Liao T., Sunet Z. // Adv. Sci. 2020. Vol. 7. P. 2001069. doi 10.1002/advs.202001069
  11. 11. Irmawati Y., Prakoso B., Balqis F., Indriyati, Yudianti R., Iskandar F., Sumboja A. // Energy Fuels. 2023. Vol. 37. N 7. P. 4858. doi 10.1021/acs.energyfuels.2c04272
  12. 12. Osmieri L. // Chem. Eng. 2019. Vol. 3. N 1. P. 16. doi 10.3390/chemengineering3010016
  13. 13. Wu S., Qu X., Zhu J., Zhao Y., Xiang X., Shang H., Zhang B. // J. Alloys Compd. 2024. Vol. 970. P. 172518. doi 10.1016/j.ijhydene.2022.05.025
  14. 14. Liu J., Li E., Ruan M., Song P., Xu W. // Catalysts. 2015. Vol. 5. N 3. P. 1167. doi 10.3390/catal5031167
  15. 15. Asset T., Atanassov P. // Joule. 2020. Vol. 4. P. 33. doi 10.1016/j.joule.2019.12.002
  16. 16. Ma R., Lin G., Zhou Y., Liu Q., Zhang T., Shan G., Yang M., Wang J. // npj Comput. Mater. 2019. Vol. 5. P. 78. doi 10.1038/s41524-019-0210-3
  17. 17. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. Vol. 132. P. 104. doi 10.1016/j.carbon.2018.02.024
  18. 18. Wang Y., Song W., Li M., Wu Z. // J. Electrochem. Soc. 2019. Vol. 166. N 10. P. F670. doi 10.1149/2.1071910jes
  19. 19. Kuzmin A.V., Shainyan B.A. // ACS Omega. 2020. Vol. 5. N 25. P. 15268. doi 10.1021/acsomega.0c01303
  20. 20. González I.Z., Valenzuela-Muñiz A.M., Verde-Gómez Y. // Int. J. Hydrog. Energy. 2022. Vol. 47. N 70. P. 30187. doi 10.1016/j.ijhydene.2022.04.079
  21. 21. Kaare K., Jantson M., Palgrave R., Tsujimoto M., Kuzmin A., Shainyan B., Kruusenberg I. // J. Electroanal. Chem. 2023. Vol. 950. P. 117859. doi 10.1016/ j.jelechem.2023.117859
  22. 22. Ващенко А.В., Кузьмин А.В., Шаинян Б. А. // ЖОХ. 2020. Т. 90. № 3. С. 483. doi 10.31857/S0044460X20030199; Vashchenko A.V., Kuzmin A.V., Shainyan B.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 3. P. 454. doi 10.1134/S1070363220030196
  23. 23. Kuzmin A.V., Shainyan B.A. // Mol. Catal. 2024. Vol. 560. P. 114123. doi 10.1016/j.mcat.2024.114123
  24. 24. Masa J., Zhao A., Xia W., Sun Z., Mei B., Muhler M., Schuhmann W. // Electrochem. Commun. 2013. Vol. 34. P. 113. doi 10.1016/j.elecom.2013.05.032
  25. 25. Guo D., Shibuya R., Akiba C., Saji S., Kondo T., Nakamura J. // Science. 2016. Vol. 351. N 6271. P. 361. doi 10.1126/science.aad0832
  26. 26. Neese F. // WIREs Comput. Mol. Sci. 2022. Vol. 12. P. e1606. doi 10.1002/wcms.1606
  27. 27. Abidin A.F.Z., Hamada I. // Surf. Sci. 2022. Vol. 724. P. 122144. doi 10.1016/j.susc.2022.122144
  28. 28. Hammer B., Hansen L.B., Nørskov J.K. // Phys. Rev. (B). 1999. Vol. 59. P. 7413. doi 10.1103/PhysRevB.59.7413
  29. 29. Nørskov J.K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J.R., Bligaard T., Jónsson H. // J. Phys. Chem. (B). 2004. Vol. 108. N 46. P. 17886. doi 10.1021/jp047349j
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library