RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Copper(II) succinate: electrochemical synthesis, characterization and application as a precursor for micron-sized copper(II) oxide fibers

PII
10.31857/S0044460X24050119-1
DOI
10.31857/S0044460X24050119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 5
Pages
639-648
Abstract
A coordination compound of copper(II) with succinic acid was obtained by electrochemical synthesis in media of various compositions. The samples were characterized by methods of quantitative analysis, ESR and IR spectroscopy, synchronous thermal analysis. The vibrational frequencies of copper(II) succinate were calculated by using DFT and the experimental IR spectra were interpreted on the basis of the results. Micro-sized copper(II) oxide fibers were obtained by thermal decomposition of synthesized samples. It was shown that the use of the water–dimethyl sulfoxide system with a volume ratio 1:1 is optimal to achieve the formation of moderately aggregated particles with a distinct filamentous morphology.
Keywords
электрохимический синтез сукцинат меди(II) оксид меди(II) спектроскопия термический анализ растровая электронная микроскопия
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Jia S., Wang Y., Liu X., Zhao S., Zhao W., Huang Y., Li Z., Lin Z. // Nano Energy. 2019. Vol. 59. P. 229. doi 10.1016/j.nanoen.2019.01.081
  2. 2. Wan M., Jin D., Feng R., Si L., Gao M., Yue L. // Inorg. Chem. Commun. 2011. Vol. 14. P. 38. doi 10.1016/ j.inoche.2010.09.025
  3. 3. Yeoh J.S., Armer C.F., Lowe A. // Mater. Today Energy. 2018. Vol. 9. P. 198. doi 10.1016/J.MTENER.2018.05.010
  4. 4. Hameed M.U., Khan Y., Ali S., Wu Z., Dar S.U., Song H., Ahmad A., Chen Y. // Ceram. Int. 2017. Vol. 43. N 1(A). P. 741. doi 10.1016/j.ceramint.2016.10.003
  5. 5. Feng L., Xuan Zh., Bai Y., Zhao H., Li L., Chen Y., Yang X., Su Ch., Guo J., Chen X. // J. Alloys Compd. 2014. Vol. 600. P. 162. doi 10.1016/j.jallcom.2014.02.132
  6. 6. Anu Prathap M.U., Kaur B., Srivastava R. // J. Colloid Interface Sci. 2012. Vol. 370. P. 144. doi 10.1016/ j.jcis.2011.12.074
  7. 7. Siddiqui H., Qureshi M.S., Haque F.Z. // Optik. 2016. Vol. 127. P. 2740. doi 10.1016/j.ijleo.2015.11.220
  8. 8. Rao M.P., Ponnusamy V.K., Wu J.J., Asiri A.M., Anandan S. // J. Environ. Chem. Eng. 2018. Vol. 6. P. 6059. doi 10.1016/j.jece.2018.09.041
  9. 9. Андрийченко Е.О., Зеленов В.И., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 4. С. 638. doi 10.31857/S0044460X2104020X; Andriychenko E.O., Zelenov V.I., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. P. 707. doi 10.1134/S1070363221040204
  10. 10. Bhosale M.A., Karekar S.C., Bhanage B.M. // ChemistrySelect. 2016. Vol. 1. N 19. P. 6297. doi 10.1002/slct.201601484
  11. 11. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. Vol. 18. P. 3536. doi 10.1039/B820778J
  12. 12. Das S., Srivastava V.Ch. // Mater. Lett. 2015. Vol. 150. P. 130. doi 10.1016/j.matlet.2015.03.018
  13. 13. Rodríguez A., García-Vázquez J.A. // Coord. Chem. Rev. 2015. Vol. 303. P. 42. doi 10.1016/j.ccr.2015.05.006
  14. 14. Андрийченко Е.О., Зеленов В.И., Беспалов А.В., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 9. С. 1416. doi 10.31857/S0044460X21090134; Andriychenko E.O., Zelenov V.I., Bespalov A.V., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 9. P. 1697. doi 10.1134/S1070363221090139
  15. 15. Cаргисян С.А., Саргсян Т.С., Агаджанян И.Г., Хизанцян К.М., Саркисян А.С., Маргарян К.С. // ЖОХ. 2020. Т. 90. Вып. 6. С. 906; Sargsyan S.H., Sargsyan T.S., Agadjanyan I.G., Khizantsyan K.M., Sargsyan A.S., Margaryan K.S. // Russ. J. Gen. Chem. 2020. Vol. 90. N 6. P. 906. doi 10.31857/S0044460X20060108
  16. 16. Ghoshal D., Ghosh A.K., Mostafa G., Ribas J., Chaudhuri N.R. // Inorg. Chim. Acta. 2007. Vol. 360. P. 1771. doi 10.1016/j.ica.2006.08.054
  17. 17. Kawata S., Kitagawa S., Machida H., Nakamoto T., Kondo M., Katada M., Kikuchi K., Ikemoto I. // Inorg. Chim. Acta. 1995. Vol. 229. P. 211. doi 10.1016/0020-1693(94)04247-S
  18. 18. Ghoshal D., Maji T.K., Mostafa G., Sain S., Lu T.-H., Ribas J., Zangrando E., Chaudhuri N.R. // Dalton Trans. 2004. Vol. 11. P. 1687. doi 10.1039/b401738b
  19. 19. Kawata S., Kitagawa S., Enomoto M., Kumagai H., Katada M. // Inorg. Chim. Acta. 1998. P. 80. doi 10.1016/S0020-1693(98)00223-0
  20. 20. González Garmendia M.J., San Nacianceno V., Seco J.M., Zúñiga F.J. // Acta Crystallogr. (C). 2009. Vol. 65. P. m436. doi 10.1107/S0108270109040566
  21. 21. O’Connor B.H., Maslen E.N. // Acta Crystallogr. 1966. Vol. 20. P. 824. doi 10.1107/S0365110X66001932
  22. 22. Rastsvetaeva R.K., Pushcharovsky D.Yu., Furmanova N.G. // Z. Kristallogr. Cryst. Mater. 1996. Vol. 211. P. 808. doi 10.1524/zkri.1996.211.11.808
  23. 23. Asai O., Kishita M., Kubo M. // J. Phys. Chem. 1959. Vol. 63. N 1. P. 96. doi 10.1021/j150571a024
  24. 24. Jasien P.G., Dhar S.K. // J. Inorg. Nucl. Chem. 1980. Vol. 42. N 6. P. 924. doi 10.1016/0022-1902(80)80471-4
  25. 25. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. P. 3536. doi 10.1039/b820778j
  26. 26. Djeghri A., Balegroune F., Guehria-Laidoudi A., Roisnel T. // Z. Kristallogr. NCS. 2004. Vol. 219. P. 471. doi 10.1524/ncrs.2004.219.14.503
  27. 27. Binitha M.P., Pradyumnan P.P. // Bull. Mater. Sci. 2017. Vol. 40. N 5. P. 1007. doi 10.1007/s12034-017-1459-0
  28. 28. Kozlevčar B., Leban I., Petrič M., Petriček S., Roubeau O., Reedijk J., Šegedin P. // Inorg. Chim. Acta. 2004. Vol. 357. P. 4220. doi 10.1016/j.ica.2004.06.012
  29. 29. Harish S.P., Sobhanadri J. // Inorg. Chim. Acta. 1985. Vol. 108. P. 147. doi 10.1016/S0020-1693(00)84533-8
  30. 30. Shee N.K., Verma R., Kumar D., Datta D. // Comput. Theor. Chem. 2015. Vol. 1061. P. 1. doi 10.1016/ j.comptc.2015.03.003
  31. 31. Sharrock P., Melnik M. // J. Coord. Chem. 1985. Vol. 14. P. 65. doi 10.1080/00958978508080679
  32. 32. Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005. Vol. 109. P. 2937. doi 10.1021/jp045733a
  33. 33. Nikumbh A.K., Pardeshi S.K., Raste M.N. // Thermochim. Acta. 2001. Vol. 374. P. 115. doi 10.1016/S0040-6031(01)00483-X
  34. 34. ГОСТ 10896-78. Иониты. Подготовка к испытанию. М.: ИПК Изд. стандартов, 1998. 7 с.
  35. 35. Neese F. // WIREs Comput. Mol. Sci. 2012. Vol. 2. P. 73. doi 10.1002/wcms.81
  36. 36. Neese F. // WIREs Comput. Mol. Sci. 2017. Vol. 8:e1327. P. 1. doi 10.1002/wcms.1327
  37. 37. Becke A. D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi 10.1103/PhysRevA.38.3098
  38. 38. Lee C., Yang W., Parr R. G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
  39. 39. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi 10.1002/jcc.21759
  40. 40. Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. P. 174. doi 10.1002/jcc.21600
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library