- PII
- 10.31857/S0044460X24030151-1
- DOI
- 10.31857/S0044460X24030151
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 3
- Pages
- 450-460
- Abstract
- Based on the process of joint reduction of copper and nickel caprylates in benzyl alcohol at 185°C, a simple method for the synthesis of bimetallic copper and nickel nanoparticles was developed. The prepared bimetallic nanoparticles may be of interest for creating new compositions of electrically conductive inks and pastes for 2D and 3D printing. The resulting nanoparticles were characterized by X-ray phase analysis, scanning and transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy. The prepared copper and nickel nanoparticles are single- or two-phase bimetallic solid solutions of various compositions. The effect of the phase composition of bimetallic powders on their resistance to oxidation was studied. It was shown that an increase in the nickel content in the composition leads to a decrease in the degree of nanoparticles oxidation. The proposed method is one-step, does not require the use of additional stabilizers and reducing agents, the synthesis is carried out in one-pot and is easily scalable. The method can also be used to obtain other bi- and polymetallic nanoparticles.
- Keywords
- никель медь биметаллические наночастицы карбоксилаты бензиловый спирт восстановление
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Wu W. // Nanoscale. 2017. Vol. 9. P. 7342. doi 10.1039/C⁷NR01604B
- 2. Huang Q., Zhu Y. // Adv. Mater. Technol. 2019. Vol. 4. N 5. P. 1. doi 10.1002/admt.201970029
- 3. Nanotechnology for food packaging. Materials, processing technologies, and safety issues / Eds M. Cerqueira, J. Lagaron, L. Castro, A. Vicente. Amsterdam: Elsevier, 2018. 332 p.
- 4. Rao V.K., Abhinav K.V., Karthik P.S., Singh S.P. // RSC Adv. 2015. Vol. 5. P. 77760. doi 10.1039/C⁵ra12013f
- 5. Magdassi S., Grouchko M., Kamyshny A. // Materials. 2010. Vol. 3. N 9. P. 4626. doi 10.3390/ma3094626
- 6. Songping W. // Microelectronics J. 2007. Vol. 38. N 1. P. 41. doi 10.1016/j.mejo.2006.09.013
- 7. Songping W., Li J., Jing N., Zhenou Z., Song L. // Intermetallics. 2007. Vol. 15. N 10. P. 1316. doi 10.1016/ j.intermet.2007.04.001
- 8. Sharma M.K., Qi D., Buchner R.D., Scharmach W.J., Papavassiliou V., Swihart M.T. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 16. P. 13542. doi 10.1021/am5026853
- 9. Seemala B., Cai C.M., Kumar R., Wyman C.E., Christopher Ph. // ACS Sustain. Chem. Eng. 2018. Vol. 6. N 2. P. 2152. doi 10.1021/acssuschemeng.7b03572
- 10. Pastor-Pérez L., Gu S., Sepúlveda-Escribano A., Rein T.R. // Int. J. Hydrog. Energy. 2019. Vol. 44. N 8. P. 4011. doi 10.1016/j.ijhydene.2018.12.127
- 11. Meneses-Brassea B.P., Borrego E.A., Blazer D.S., Sanad M.F., Pourmiri S., Gutierrez D.A., Varela-Ramirez A., Hadjipanayis G.C., El-Gendy A.A. // Nanomaterials. 2020. Vol. 10. N 10. P. 1988. doi 10.3390/nano10101988
- 12. Ban I., Stergar J., Drofenik M., Ferk G., Makovec D. // J. Magn. Magn. Mater. 2011. Vol. 323. N 17. P. 2254. doi 10.1016/j.jmmm.2011.04.004
- 13. Toshima, N., Yonezawa, T. // New J. Chem. 1998. Vol. 22. N 11. P. 1179. https://doi.org/10.1039/A805753B
- 14. Ferk G., Stergar J., Makovec D., Hamler A., Jaglicic Z., Drofenik M., Ban I. // J. Alloys Compd. 2015. Vol. 648. N 5. P. 53. doi 10.1016/j.jallcom.2015.06.067
- 15. Stergar J., Ferk G., Ban I., Drofenik M., Hamler A., Jagodic M., Makovec D. // J. Alloys Compd. 2013. Vol. 576. P. 220. doi 10.1016/j.jallcom.2013.04.130
- 16. Wen M., Liu Q.Y., Wang Y.F., Zhu Y.Z., Wu Q.S. // Colloids Surf. (A). 2008. Vol. 318. P. 238. doi 10.1016/ j.colsurfa.2007.12.041
- 17. Пугачев В.М., Захаров Ю.А., Васильева О.В., Карпушкина Ю.В., Додонов В.Г. // Химия в интересах устойчивого развития. 2015. Т. 23. С. 169. doi 10.15372/KhUR²0150211
- 18. Fiévet F., Ammar-Merah S., Brayner R., Chau F., Giraud M., Mammeri F., Peron J., Piquemal J.-Y., Sicard L., Viau G. // Chem. Soc. Rev. 2018. Vol. 47. P. 5187. doi 10.1039/C⁷CS00777A
- 19. Parimaladevi R., Parvathi V.P., Lakshmi S.S., Umadev M. // Mater. Lett. 2018. Vol. 211. P. 82. doi 10.1016/ j.matlet.2017.09.097
- 20. Bonet F., Grugeon S., Dupont L., Herrera Urbina R., Guery C., Tarascon J.M. // J. Solid State Chem. 2003. Vol. 172. P. 111. doi 10.1016/S0022-4596(02)00163-9
- 21. Niederberger M., Bartl M.H., Stucky G.D. // J. Am. Chem. Soc. 2002. Vol. 124, N 46. P. 13642–13643. https://doi.org/10.1021/ja027115i
- 22. Ляхов Н.З., Юхин Ю.М., Тухтаев Р.К., Мищенко К.В., Титков А.И., Логутенко О.А. // Химия в интересах устойчивого развития. 2014. Т. 22. № 4. С. 409.
- 23. Юхин Ю.М., Титков А.И., Логутенко О.А., Мищенко К.В., Ляхов Н.З. // ЖОХ. 2017. Т. 87. № 12. С. 2057; Yukhin Yu.M., Titkov A.I., Logutenko O.A., Mishchenko K.V., Lyakhov N.Z. // Russ. J. Gen. Chem. 2017. Vol. 87. N 12. P. 2870. doi 10.1134/S1070363217120180
- 24. Юхин Ю.М., Логутенко О.А., Титков А.И., Ляхов Н.З. // Хим. технол. 2016. Т. 17. № 7. С. 314; Yukhin Yu.M., Logutenko O.A., Titkov A.I., Lyakhov N.Z. // Theor. Found. Chem. Eng. 2017. Vol. 51. N 5. P. 809. doi 10.1134/S0040579517050232
- 25. Титков А.И., Логутенко О.А., Булина Н.В., Юхин Ю.М., Ляхов Н.З. // Хим. технол. 2016. Т. 17. № 5. С. 202; Titkov A.I., Logutenko O.A., Bulina N.V., Yukhin Y.M., Lyakhov N.Z. // Theor. Found. Chem. Eng. 2017. Vol. 51. N 4. P. 557. doi 10.1134/S004057951704014
- 26. Titkov A.I., Logutenko O.A., Vorobyov A.M., Gerasimov E.Yu., Shundrina I.K., Bulina N.V., Lyakhov N.Z. // Colloids Surf. (A). 2019. Vol. 577. P. 500. doi 10.1016/ j.colsurfa.2019.06.008
- 27. Tsybulya S.V., Cherepanova S.V., Soloviyova L.P. // J. Struct. Chem. 1996. Vol. 37, N 2. 332. https://doi.org/10.1007/bf02591064
- 28. Пирсон У.Б. Кристаллохимия и физика металлов и сплавов. М.: Мир, 1977. T. 1. 419 c.