RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis and Structure of Barium Hexaferrite BaFe12–xInxO19 (x = 0–1)

PII
10.31857/S0044460X24020149-1
DOI
10.31857/S0044460X24020149
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 2
Pages
285-291
Abstract
This study presents the results of the synthesis and examination of indium-substituted barium hexaferrite samples with the formula BaFe12–xInxO19. The ferrites were obtained via a solid state synthesis method. The substitution level of indium, represented by x(In), was varied from 0 to 1 in 0.25 increments. The stoichiometric formulas of the compounds were calculated using the EDS data. The powder X-ray diffraction analysis indicated that all samples form a single crystalline phase with the M-type hexaferrite structure. Parameters of the crystal unit cell were calculated from powder diffraction data. An expansion of the crystal lattice parameters was observed as iron was substituted with indium, from x = 0 to x = 0.84. The Curie temperatures of the synthesized ferrites were determined using differential scanning calorimetry (DSC) method. It is established that the Curie temperature decreases from 452 to 292°C with In content growth from x = 0 to x = 0.84 in the BaFe12–xInxO19.
Keywords
гексаферриты М-типа твердофазный синтез BaFe12–xInxO19 температура Кюри легирование индием
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Velhal N., Kulkarni G., Mahadik D., Chowdhury P., Barshilia H., Puri V. // J. Alloys Compd. 2016. Vol. 682. P. 730. doi 10.1016/j.jallcom.2016.04.310
  2. 2. Pullar R. // Progr. Mater. Sci. 2012. Vol. 57. P. 1191. doi 10.1016/j.pmatsci.2012.04.001
  3. 3. Xu Z., Qi Z., Wang G., Liu C., Cui J., Li W., Wang T. // Chinese Phys. (B). 2022. Vol. 33. N 3. doi 10.1088/1674-1056/ac5240
  4. 4. Tran N., Yang R., Jeong W., Manh D.H., Phan T., Lee B. // J. Am. Ceram. Soc. 2022. Vol. 105. P. 4122. doi 10.1111/jace.18378
  5. 5. Vovchenko L., Matzui L., Brusylovets L., Oliynyk V., Launets V., Shames A., Yakovenko O., Skoryk N. // Mater. Sci. Eng. Technol. 2016. Vol. 47. P. 139. doi 10.1002/mawe.201600487
  6. 6. Wang Y., Huang P., Tran N., Ayed H., Mouldi A. // Surfaces and Interfaces. 2022. Vol. 31. Art. no. 102065. doi 10.1016/j.surfin.2022.102065
  7. 7. Xiong X., Ma H., Mohammed J., Mehrez S., Alamri S., Giang H., Hoi H., // Ceram. Int. 2022. Vol. 48. P. 27420. doi 10.1016/j.ceramint.2022.05.395
  8. 8. Miranda F.A., Subramanyam G., Keuls F.W., Romanofsky R.R., Warner J.D., Mueller C.H. // IEEE Trans. Microwave Theory Technol. 2000. Vol. 48. P. 1181. doi 10.1109/22.853458
  9. 9. Suthar M., Roy P.K. // Mater. Sci. Eng. (B). 2022. Vol. 283. Art. no. 115801. doi 10.1016/j.mseb.2022.115801
  10. 10. Shakir H.M.F., Shahzad M., Aziz H.R., Rizwan M.S., Shahid S., Ali S.H., Zhao T. // J. Alloys Compd. 2022. Vol. 902. Art. no. 163847. doi 10.1016/j.jallcom.2022.163847
  11. 11. Hu Z., Koval V., Wu J., Yang B., Leavesley A., Wylde R., Reece M., Jia C., Yan H. // ACS App. Mater. Interfaces. 2022. Vol. 14. P. 46738. doi 10.1021/acsami.2c13088
  12. 12. Ahmed A., Prokhorov A.S., Anzin V., Bush A., Vinnik D. A., Gorshunov B., Alyabyeva L.N. // J. Alloys Compd. 2022. Vol. 898. P. 162761. doi 10.1016/j.jallcom.2020.155462
  13. 13. Alyabyeva L.N., Prokhorov A.S., Vinnik D.A., Anzin V.B., Ahmed A.G., Mikheykin A., Bednyakov P., Kadlec C., Kadlec F., Prado E., Prokleška J., Proschek P., Kamba S., Pronin A.V., Dressel M., Abalmasov V.A., Dremov V.V., Schmid S., Savinov M., Lunkenheimer P., Gorshunov B.P. // NPG Asia Mater. 2021. Vol. 13. Art. no. 63. doi 10.1038/s41427-021-00331-x
  14. 14. Gorbachev E.A., Trusov L.A., Sleptsova A.E., Kozlyakova E.S., Alyabyeva L.N., Yegiyan S.R., Prokhorov A.S., Lebedev V.A., Roslyakov I.V., Vasiliev A.V., Kazin P.E. // Mater. Today. 2020. Vol. 32. P. 13. doi 10.1016/j.mattod.2019.05.020
  15. 15. Song Y.Y., Ordóez-Romero Ć.L., Wu M. // Appl. Phys. Lett. 2009. Vol. 95. P. 142506. doi 10.1063/1.3246170
  16. 16. Harris V.G. // IEEE Trans. Magnetics. 2012. Vol. 48. P. 1075. doi 10.1109/TMAG.2011.2180732
  17. 17. Trukhanov A., Trukhanov S., Kostishyn V.G., Panina L.V., Salem M., Kazakevich I.S., Turchenko V., Kochervinsky V.V., Krivchenya D.A. // Phys. Solid State. 2017. Vol. 59. P. 737. doi 10.1134/S1063783417040308
  18. 18. Chen D., Liu Y., Li Y., Yang K., Zhang H. // J. Magn. Magn. Mater. 2013. Vol. 337–338. P. 65. doi 10.1016/ j.jmmm.2013.02.036
  19. 19. Almessiere M.A., Slimani Y., Gungunes H., Ali S., Baykal A., Ercan I. // Ceram. Int. 2019. Vol. 45. N 8. P. 10048. doi 10.1016/j.ceramint.2019.02.050
  20. 20. Zhang W., Peng B., Zhang. W., Zhou S., Schmidt H. // J. Magn. Magn. Mater. 2010. Vol. 322. P. 1859. doi 10.1016/j.jmmm.2009.12.041
  21. 21. Песин Л.А., Гудкова С.А., Живулин В.Е., Павлова К.П., Стариков А.Ю., Шерстюк Д.П., Лебедев А.М., Чумаков Р.Г., Винник Д.А. // ЖСХ. 2023. Т. 64. Вып. 12. С. 119470. doi 10.26902/JSC_id119470; Pesin L.A., Gudkova S.A., Zhivulin V.E., Pavlova K.P., Starikov A.Y., Sherstyuk D.P., Lebedev A.M., Chumakov R.G., Vinnik D.A. // J. Struct. Chem. 2023. Vol. 64. P. 2358. doi 10.1134/S0022476623120077
  22. 22. Wu C., Wang W., Li Q., Wei M., Luo Q., Fan Y., Jiang X., Lan Z., Jiao Z., Tian Y., Sun K., Yu. Z. // J. Am. Ceram. Soc. 2022. Vol. 105. P. 7492. doi 10.1111/jace.18702
  23. 23. Mahadevan S., Sankar A.R., Singh S., Sharma P. // J. Alloys Compd. 2023. Vol. 959. Art. no. 170456. doi 10.1016/j.jallcom.2023.170456
  24. 24. Li Y., Liu Q., Qi M., Chen Y. // J. Electr. Mater. 2023. Vol. 52. P. 523. doi 10.1007/s11664-022-10021-1
  25. 25. Mohammad F.Z., Huma F., Ali K. // J. Mater. Sci. 2023. Vol. 34. P. 1022. doi 10.1007/s10854-023-10377-y
  26. 26. Irshad Z., Bibi I., Ghafoor A., Majid F., Kamal S., Ezzine S., Elqahtani Z. M., Alwadai N., Messaoudi N., Iqbal M. // Res. Phys. 2022. Vol. 42. Art. no. 106006. doi 10.1016/j.rinp.2022.106006
  27. 27. Teh G.B., Nagalingam S., Jefferson D.A. // Mater. Chem. Phys. 2007. Vol. 101. P. 158. doi 10.1016/j.matchemphys.2006.03.008
  28. 28. Denisov V.M., Denisova L.T., Irtyugo L.A., Patrin G.S., Volkov N.V., Chumilina L.G. // Phys. Solid State. 2013. Vol. 55. P. 240. doi 10.1134/S1063783412120116
  29. 29. Zhang W., Li P., Wang Y., Guo J., Li J., Shan S., Ma S., Xing S. // Magnetochemistry. 2022. Vol. 8. P. 51. doi 10.3390/magnetochemistry8050051
  30. 30. Khan M.A., Afzal S., Gulbadan S., Mahmood K., Ashraf G.A., Akhtar M.N. // Ceram. Int. 2023. Vol. 49. P. 12144. doi 10.1016/j.ceramint.2022.12.066
  31. 31. Mohammed I., Mohammed J., Carol T.T., Srivastava A.K. // Hybrid Adv. 2023. Vol. 3. P. 100058. doi 10.1016/ j.hybadv.2023.100058
  32. 32. Verma S., Singh A., Sharma S., Kaur P., Godara S.K., Malhi P.S., Ahmed J., Babu P.D., Singh M. // J. Alloys Compd. 2023. Vol. 930. P. 167410. doi 10.1016/j.jallcom.2022.167410
  33. 33. Manglam M.K., Kar M. // J. Alloys Compd. 2022. Vol. 899. Art. no. 163367. doi 10.1016/j.jallcom.2021.163367
  34. 34. Gorbachev E.A., Trusov L.A., Alyabyeva L.N., Roslyakov I.V., Lebedev V.A., Kozlyakova E.S., Magdysyuk O.V., Sobolev A.V., Glazkova I.S., Beloshapkin S.A., Gorshunov B.P., Kazin P.E. // Mater. Horizons. 2022. Vol. 9. P. 1264. doi 10.1039/D1MH01797G
  35. 35. Younus S., Murtaza G., Aloufi N.M., Somaily H.H. // Ceram. Int. 2022. Vol. 48. P. 31041. doi 10.1016/j.ceramint.2022.07.065
  36. 36. Agayev F., Trukhanov S., Trukhanov A., Jabarov S., Ayyubova G., Mirzayev M., Trukhanova E., Vinnik D., Kozlovskiy A., Zdorovets M., Sombra A., Zhou D., Jotania R., Singh C., Trukhanov A. // J. Therm. Anal. Calorim. 2022. Vol. 147. P. 14107. doi 10.1007/s10973-022-11742-5
  37. 37. Коровушкин В.В., Труханов А.В., Шипко М.Н., Костишин В.Г., Исаев И.М., Миронович А.Ю., Труханов С.В. // ЖНХ. 2019. T. 64. № 5. С. 463. doi 10.1134/S0044457X19050118; Korovushkin V.V., Trukhanov A.V., Shipko M.N., Kostishin V.G., Isaev I.M., Mironovich A.Yu., Trukhanov S.V. // Russ. J. Inorg. Chem. 2019. Vol. 64. N 5. P. 574. doi 10.1134/S0036023619050115
  38. 38. Baykal A., Gungunes H., Sözeri H., Amir M., Auwal I., Asiri S., Shirsath S., Korkmaz A.D. // Ceram. Int. 2017. Vol. 43. N 17. P. 15486. doi 10.1016/j.ceramint.2017.08.096
  39. 39. Найден Е.П., Журавлев В.А., Минин Р.В., Итин В.И., Коровин Е.Ю. // Изв. вузов. Физика. 2015. Т. 58. Вып. 1. С. 112.
  40. 40. Hong Y.S., Ho C.M., Hsu H.Y., Liu C.T. // J. Magn. Magn. Mater. 2004. Vol. 279. P. 401. doi 10.1016/ j.jmmm.2004.02.008
  41. 41. Alange R., Khirade P., Birajdar S., Humbe A., Jadhav K.M. // J. Mol. Struct. 2015. Vol. 1106. P. 460. doi 10.1016/j.molstruc.2015.11.004
  42. 42. Lim E.S., Mun K.R., Kang Y.M. // J. Magn. Magn. Mater. 2018. Vol. 464. P. 26. doi 10.1088/1757-899X/ 202/1/012040
  43. 43. Hu S.L., Liu J., Yu H.Y., Liu Z.W. // J. Magn. Magn. Mater. 2019. Vol. 473. P. 79. doi 10.1016/j.jmmm.2018.10.044
  44. 44. Phan T.L., Tran N., Nguyen H.H., Yang D., Dang N., Lee B. // J. Alloys Compd. 2019. Vol. 216. Art. no. 152528. doi 10.1016/j.jallcom.2019.152528
  45. 45. Rianna M., Situmorang M., Kurniawan C., Tetuko A.P., Setiadi E.A., Ginting M., Sebayang P. // Mater. Lett. 2019. Vol. 256. Art. no. 126612. doi 10.1016/j.matlet.2019.126612
  46. 46. Rahman L., Rahman S., Biswas B. // Helion. 2023. Vol. 9. P. 1. doi 10.1016/j.heliyon.2023.e14532
  47. 47. Gordani G., Mohseni M., Ghasemi A., Hosseini S. // Mater. Res. Bull. 2016. Vol. 76. P. 187. doi 10.1016/j.materresbull.2015.12.021
  48. 48. Wong-Ng W., McMurdie H., Paretzkin B., Hubbard C., Dragoo A, // Powder Diffract. 1988. Vol. 3. P. 246.
  49. 49. Shannon R.D. // Acta Crystallogr. 1976. Vol. 32. P. 751. doi 10.1107/S0567739476001551
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library