RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis and properties of (+)-ketopinic and (-)-camphanic acids esters bearing a nitrogen-containing heterocycle

PII
10.31857/S0044460X23120053-1
DOI
10.31857/S0044460X23120053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 12
Pages
1854-1866
Abstract
A three-stage method was proposed for the synthesis of (1 S )-(+)-camphor-10-sulfonic acid, (+)-ketopinic and (-)-camphanic acids esters containing a saturated nitrogen-containing heterocycle. It was found that (1 S )-(+)camphor-10-sulfonic acid esters undergo destruction with elimination of the sulfonic acid group in substitution reactions involving nitrogen-containing heterocycles. Esters of (+)-ketopinic and (-)-camphanic acids were formed during the proposed synthetic route, but undergo transesterification under column chromatography conditions. Quantum chemical calculations showed that the destruction of the ester bond in the case of (+)-ketopinic and (-)-camphanic acids requires less energy than the breaking of a similar bond in (-)-borneol esters. It was revealed that the internal bond strength index (IBSI) for the alkyl C-O bond in (-)-borneol esters is higher than in (+)-ketopinic and (-)-camphanic acid esters. Antiviral properties against the H1N1 influenza virus were studied for derivatives of (+)-ketopinic and (-)-camphanic acids.
Keywords
(1S)-(+)-камфора-10-сульфокислота (+)-кетопиновая кислота (-)-камфановая кислота противовирусная активность
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
32

References

  1. 1. Talele T.T. // J. Med. Chem. 2018. Vol. 61. Р. 2166. doi 10.1021/acs.jmedchem.7b00315
  2. 2. Sokolova A.S., Yarovaya O.I., Semenova M.D., Shtro A.A., Orshanskaya I.R., Zarubaev V.V., Salakhutdinov N.F. // MedChemComm. 2017. Vol. 8. Р. 960. doi 10.1021/acs.joc.8b00655
  3. 3. Sokolova A.S., Yarovaya O.I., Zybkina A.V., Mordvinova E.D., Shcherbakova N.S., Zaykovskaya A.V., Baev D.S., Tolstikova T.G., Shcherbakov D.N., Pyankov O.V., Maksyutov R.A., Salakhutdinov N.F. // Eur. J. Med. Chem. 2020. Vol. 207. P. 112726. doi 10.1016/j.ejmech.2020.112726
  4. 4. Sokolova A.S., Yarovaya O.I., Shtro A.A., Klabukov A.M., Galochkina A.V, Nikolaeva V., Petukhova G.D., Borisevich S.S., Khamitov E.M., Salakhutdinov N.F. // Pharmaceuticals. 2022. Vol. 15. N 11. P. 1390. doi 10.3390/ph15111390
  5. 5. Yarovaya O.I., Shcherbakov D.N., Borisevich S.S., Sokolova A.S., Gureev M.A., Khamitov E.M., Rudometova N.B., Zybkina A.V., Mordvinova E.D., Zaykovskaya A.V., Rogachev A.D., Pyankov O.V., Maksyutov R.A., Salakhutdinov N.F. // Viruses. 2022. Vol. 14. N 6. P. 1295. doi 10.3390/v14061295
  6. 6. Sokolova A.S., Putilova V.P., Yarovaya O.I., Zybkina A.V., Mordvinova E.D., Zaykovskaya A.V., Shcherbakov D.N., Orshanskaya I.R., Sinegubova E.O., Esaulkova I.L., Borisevich S.S., Bormotov N.I., Shishkina L.N., Zarubaev V.V., Pyankov O.V., Maksyutov R.A., Salakhutdinov N.F. // Molecules. 2021. Vol. 26. N 8. P. 2235. doi 10.3390/molecules26082235. 2019
  7. 7. Соколова А.С., Баранова Д.В., Яровая О.И., Зыбкина А.В., Мордвинова Е.Д., Зайковская А.В., Баев Д.С., Толстикова Т.Г., Щербаков Д.Н., Пьянков О.В., Максютов Р.А., Салахутдинов Н.Ф. // Изв. АН. Сер. xим. 2023. Т. 72. № 10. С. 2536
  8. 8. Sokolova A.S., Baranova D.V., Yarovaya O.I., Zybkina A.V., Mordvinova E.D., Zaykovskaya A.V., Baev D.S., Tolstikova T.G., Shcherbakov D.N., Pyankov O.V., Maksyutov R.A., Salakhutdinov N.F. // Russ. Chem. Bull. 2023. Vol. 72. P. 2536. doi 10.1007/s11172-023-4056-y
  9. 9. Соколова А.С., Баранова Д.В., Яровая О.И., Баев Д.С., Полежаева О.А., Зыбкина А.В., Щербаков Д.Н., Толстикова Т.Г., Салахутдинов Н.Ф. // Изв. АН. Сер. хим. 2019. Т. 68, N 5. C. 1041
  10. 10. Sokolova A.S., Baranova D.V., Yarovaya O.I., Baev D.S., Polezhaeva O.A., Zybkina A.V., Shcherbakov D.N., Tolstikova T.G., Salakhutdinov N.F. // Russ. Chem. Bull. 2019. Vol. 68. N 5. P. 1041. doi 10.1007/s11172-019-2517-0
  11. 11. Huynh U., McDonald S. L., Lim D., Uddin Md.N., Wengryniuk S.E., Dey S., Coltart D.M. // J. Org. Chem. 2018. Vol. 83. N 21. Р. 12951. doi 10.1021/acs.joc.8b00655
  12. 12. Gerlach H., Kappes D., Boeckman R.K., Jr., Maw G. // Org. Synth. Coll. 1998. Vol. 9. Р.151. doi 10.15227/orgsyn.071.0048
  13. 13. Gomez-Bombarelli R., Calle E., Casado J. // J. Org. Chem. 2013. Vol. 78. Р. 6880. doi 10.1021/jo4002596
  14. 14. Silva P.L., Silva C.M., Guimarães L., Pliego J.R., Jr. // Theor. Chem. Acc. 2015. Vol. 134. P. 1591. doi 10.1007/s00214-014-1591-5
  15. 15. Klein J., Khartabil H., Boisson J.C., Contreras-Garciá J., Piquemal J.P., Hénon E. // J. Phys. Chem. (A). 2020. Vol. 124. N 9. P. 1850. doi 10.1021/acs.jpca.9b09845
  16. 16. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. N 5. P. 580. doi 10.1002/jcc.22885
  17. 17. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Fox D.J. Gaussian 16 Rev. C.01. Wallingford, CT. 2016.
  18. 18. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. N 7. P. 5648. doi 10.1063/1.464913
  19. 19. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. N 2. P. 785. doi 10.1103/PhysRevB.37.785
  20. 20. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. Vol. 72. P. 650. doi 10.1063/1.438955
  21. 21. Baronio C.M., Barth A. // J. Phys. Chem. (B). 2020. Vol. 124. N 9. P. 1703. doi 10.1021/acs.jpcb.9b11793
  22. 22. Cheng H., Yan D., Wu L., Liang P., Cai Y., Li L. // Acta Crystallogr. (C). 2022. Vol. 78. N 10. P. 531. doi 10.1107/S2053229622008592
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library