- PII
- 10.31857/S0044460X23110161-1
- DOI
- 10.31857/S0044460X23110161
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 11
- Pages
- 1796-1804
- Abstract
- Organoleptic evaluations in a ten-point scale of wine experts and experimental physicochemical parameters of red (1599 samples) and white (4898 samples) wines of Portuguese manufacturers were analyzed using STATIS-TICA sofware. Methods of agglomerative and iterative ( k -means algorithm) clustering revealed the grouping of similar wine samples into three, four and six clusters depending on the Euclidean distance of association. The quantitative filling of clusters with samples of bad wines (grades 3 and 4), normal wines (grades 5 and 6) and good wines (grades 7, 8, 9) was established. Neural network (MLP) and discriminant analyzes (DA) were performed; algorithms of classification trees (CT), support vector machines (SVM), naive Bayesian classification (NBC) and nearest neighbors (kNN) were involved. The best performance was demonstrated by neural network models. Multilayer perceptorons classifiers were trained: for red wines - MLP 11-7-3, MLP 11-13-4, MLP 11-14-6; for white wines - MLP 11-9-3, MLP 11-5-4, MLP 11-9-6. The properties of wines, whose contribution to the separating power of classifiers is decisive, are revealed. The ranges of changes in physicochemical parameters in three clusters of red and white wines for bad, normal and good wines were given.
- Keywords
- вино качество кластеризация классификация прогнозирование
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Косюра В.Т., Донченко Л.В., Надыкта В.Д. Основы виноделия: учебное пособие для вузов. М.: Юрайт. 2023. 422 с.
- 2. Paracelsus Т. // 1965. Werke. Bd. 2. Darmstadt. S. 508.
- 3. Forina M., Armanino С., Casting M., Ubigli M. // Vitis. 1986. Vol. 25. P. 189. doi 10.5073/vitis.1986.25.189-201
- 4. Sun L.X., Danzer K., Thiel G. // Fresenius J. Anal. Chem. 1997. Vol. 359. P. 143. doi 10.1007/s002160050551
- 5. Ebeler S.E. // Food Rev. Int. 2007. Vol. 17. N 1. P. 45. doi 10.1081/FRI-100000517
- 6. Legin A., Rudnitskaya V., Lvova L., Vlasov Yu., Di Natale C., D'Amico A. // Anal. Chim. Acta. 2003. Vol. 484. N 1. P. 33. doi 10.1016/S0003-2670(03)00301-5
- 7. Cortez P., Cerderia A., Almeida A., Matos V., Reis J. // Decision Support Systems. 2009. Vol. 47. N 4. P. 547. doi 10.1016/j.dss.2009.05.016
- 8. Appalasamy P., Mustapha A., Rizal N., Johari F., Mansor A. // J. Appl. Sci. 2012. Vol. 12. N 6. P. 598. doi 10.3923/jas.2012.598.601
- 9. Baykal H., Yildirim H.K. // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. N 5. P. 415. doi 10.1080/10408398.2010.540359
- 10. Якуба Ю.Ф., Каунова А.А., Темердашев З.А., Титаренко В.О., Халафян А.А. Аналитика и контроль. 2014. Т. 18. № 4. С. 344.
- 11. Nebot À., Mugica F., Escobet A. // 5th Int. Conf. SIMULTECH. Colmar, France. 2015. Р. 501. doi 10.5220/0005551905010507
- 12. Er Y., Atasoy A. // IJISAE. 2016. Vol. 4 (Special Issue). P. 23. doi 10.18201/ijisae.265954
- 13. Халафян А.А., Темердашев З.А., Гугучкина Т.И., Якуба Ю.Ф. // Аналитика и контроль. 2017. Т. 21. № 2. С. 161. doi 10.15826/analitika.2017.21.2.010
- 14. Gupta Y. // Procedia Comput. Sci. 2018. Vol. 125. P. 305. doi 10.1016/j.procs.2017.12.041
- 15. Ahammed B., Abedin M. // Model Assist. Stat. Appl. 2018. Vol. 13. N 1. P. 85. doi 10.3233/MAS-170420
- 16. Луценко Е.В., Печурина Е.К., Сергеев А.Э. // Научный журнал КубГАУ. 2019. № 149(05). С. 2. doi 10.21515/1990-4665-149-015
- 17. Shruthi P. // 1st Int. Сonf. ICATIECE. Bangalore, India. 2019. doi 10.1109/ICATIECE45860.2019.9063846
- 18. Chao Y., Li K., Jia G. // J. Phys. Conf. Ser. 2020. Vol. 1684. N 1. 012067. doi 10.1088/1742-6596/1684/1/012067
- 19. Kumar S., Agrawal K., Mandan N. // Int. Conf. ICCCI. Coimbatore, India. 2020. doi 10.1109/ICCCI48352.2020.9104095
- 20. Zhang S., Shao C., Xiao W. // 3rd Int. Conf. ICAIBD. Chengdu, China. 2020. P. 128. doi 10.1109/ICAIBD49809.2020.9137477
- 21. Мильман Б.Л., Журкович И.К. // ЖАХ. 2020. Т. 75, № 4. С. 316. doi 10.31857/S0044450220020139
- 22. Milman B.L., Zhurkovich I.K. // J. Anal. Chem. 2020. Vol. 75. N 4. P. 316. doi 10.31857/S0044450220020139
- 23. Mor N.S., Asras T., Gal E., Demasia T., Tarab E., Ezekiel N., Nikapros O., Semimufar O., Gladky E., Karpenko M., Sason D., Maslov D., Mor O. // agriRxiv. 2022. Р. 1. doi 10.31220/agriRxiv.2022.00125
- 24. Machine Learning Repository files. https://archive.ics.uci.edu/ml/datasets/Wine+Quality
- 25. Боровиков В.П. Популярное введение в современный анализ данных и машинное обучение на STATISTICA. М.: Горячая линия-Телеком, 2019. 354 с.
- 26. StatSoft, Inc. Электронный учебник по статистике. М.: StatSoft. WEB: http://www.statsoft.ru/home/textbook/default.htm
- 27. Бондарев Н.В. // ЖОХ. 2021. Т. 91. Вып. 3. С. 449. doi 10.31857/S0044460X21030112
- 28. Bondarev N.V. // J. Gen. Chem. 2021. Vol. 91. N 3. P. 409. doi 10.1134/S1070363221030117