RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Clustering of organoleptic quality evaluations of red and white wines by physicochemical parameters using statistica software

PII
10.31857/S0044460X23110161-1
DOI
10.31857/S0044460X23110161
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 11
Pages
1796-1804
Abstract
Organoleptic evaluations in a ten-point scale of wine experts and experimental physicochemical parameters of red (1599 samples) and white (4898 samples) wines of Portuguese manufacturers were analyzed using STATIS-TICA sofware. Methods of agglomerative and iterative ( k -means algorithm) clustering revealed the grouping of similar wine samples into three, four and six clusters depending on the Euclidean distance of association. The quantitative filling of clusters with samples of bad wines (grades 3 and 4), normal wines (grades 5 and 6) and good wines (grades 7, 8, 9) was established. Neural network (MLP) and discriminant analyzes (DA) were performed; algorithms of classification trees (CT), support vector machines (SVM), naive Bayesian classification (NBC) and nearest neighbors (kNN) were involved. The best performance was demonstrated by neural network models. Multilayer perceptorons classifiers were trained: for red wines - MLP 11-7-3, MLP 11-13-4, MLP 11-14-6; for white wines - MLP 11-9-3, MLP 11-5-4, MLP 11-9-6. The properties of wines, whose contribution to the separating power of classifiers is decisive, are revealed. The ranges of changes in physicochemical parameters in three clusters of red and white wines for bad, normal and good wines were given.
Keywords
вино качество кластеризация классификация прогнозирование
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Косюра В.Т., Донченко Л.В., Надыкта В.Д. Основы виноделия: учебное пособие для вузов. М.: Юрайт. 2023. 422 с.
  2. 2. Paracelsus Т. // 1965. Werke. Bd. 2. Darmstadt. S. 508.
  3. 3. Forina M., Armanino С., Casting M., Ubigli M. // Vitis. 1986. Vol. 25. P. 189. doi 10.5073/vitis.1986.25.189-201
  4. 4. Sun L.X., Danzer K., Thiel G. // Fresenius J. Anal. Chem. 1997. Vol. 359. P. 143. doi 10.1007/s002160050551
  5. 5. Ebeler S.E. // Food Rev. Int. 2007. Vol. 17. N 1. P. 45. doi 10.1081/FRI-100000517
  6. 6. Legin A., Rudnitskaya V., Lvova L., Vlasov Yu., Di Natale C., D'Amico A. // Anal. Chim. Acta. 2003. Vol. 484. N 1. P. 33. doi 10.1016/S0003-2670(03)00301-5
  7. 7. Cortez P., Cerderia A., Almeida A., Matos V., Reis J. // Decision Support Systems. 2009. Vol. 47. N 4. P. 547. doi 10.1016/j.dss.2009.05.016
  8. 8. Appalasamy P., Mustapha A., Rizal N., Johari F., Mansor A. // J. Appl. Sci. 2012. Vol. 12. N 6. P. 598. doi 10.3923/jas.2012.598.601
  9. 9. Baykal H., Yildirim H.K. // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. N 5. P. 415. doi 10.1080/10408398.2010.540359
  10. 10. Якуба Ю.Ф., Каунова А.А., Темердашев З.А., Титаренко В.О., Халафян А.А. Аналитика и контроль. 2014. Т. 18. № 4. С. 344.
  11. 11. Nebot À., Mugica F., Escobet A. // 5th Int. Conf. SIMULTECH. Colmar, France. 2015. Р. 501. doi 10.5220/0005551905010507
  12. 12. Er Y., Atasoy A. // IJISAE. 2016. Vol. 4 (Special Issue). P. 23. doi 10.18201/ijisae.265954
  13. 13. Халафян А.А., Темердашев З.А., Гугучкина Т.И., Якуба Ю.Ф. // Аналитика и контроль. 2017. Т. 21. № 2. С. 161. doi 10.15826/analitika.2017.21.2.010
  14. 14. Gupta Y. // Procedia Comput. Sci. 2018. Vol. 125. P. 305. doi 10.1016/j.procs.2017.12.041
  15. 15. Ahammed B., Abedin M. // Model Assist. Stat. Appl. 2018. Vol. 13. N 1. P. 85. doi 10.3233/MAS-170420
  16. 16. Луценко Е.В., Печурина Е.К., Сергеев А.Э. // Научный журнал КубГАУ. 2019. № 149(05). С. 2. doi 10.21515/1990-4665-149-015
  17. 17. Shruthi P. // 1st Int. Сonf. ICATIECE. Bangalore, India. 2019. doi 10.1109/ICATIECE45860.2019.9063846
  18. 18. Chao Y., Li K., Jia G. // J. Phys. Conf. Ser. 2020. Vol. 1684. N 1. 012067. doi 10.1088/1742-6596/1684/1/012067
  19. 19. Kumar S., Agrawal K., Mandan N. // Int. Conf. ICCCI. Coimbatore, India. 2020. doi 10.1109/ICCCI48352.2020.9104095
  20. 20. Zhang S., Shao C., Xiao W. // 3rd Int. Conf. ICAIBD. Chengdu, China. 2020. P. 128. doi 10.1109/ICAIBD49809.2020.9137477
  21. 21. Мильман Б.Л., Журкович И.К. // ЖАХ. 2020. Т. 75, № 4. С. 316. doi 10.31857/S0044450220020139
  22. 22. Milman B.L., Zhurkovich I.K. // J. Anal. Chem. 2020. Vol. 75. N 4. P. 316. doi 10.31857/S0044450220020139
  23. 23. Mor N.S., Asras T., Gal E., Demasia T., Tarab E., Ezekiel N., Nikapros O., Semimufar O., Gladky E., Karpenko M., Sason D., Maslov D., Mor O. // agriRxiv. 2022. Р. 1. doi 10.31220/agriRxiv.2022.00125
  24. 24. Machine Learning Repository files. https://archive.ics.uci.edu/ml/datasets/Wine+Quality
  25. 25. Боровиков В.П. Популярное введение в современный анализ данных и машинное обучение на STATISTICA. М.: Горячая линия-Телеком, 2019. 354 с.
  26. 26. StatSoft, Inc. Электронный учебник по статистике. М.: StatSoft. WEB: http://www.statsoft.ru/home/textbook/default.htm
  27. 27. Бондарев Н.В. // ЖОХ. 2021. Т. 91. Вып. 3. С. 449. doi 10.31857/S0044460X21030112
  28. 28. Bondarev N.V. // J. Gen. Chem. 2021. Vol. 91. N 3. P. 409. doi 10.1134/S1070363221030117
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library