RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis of hybrid molecules based on conjugated polycyclic hydrocarbons and С60 fullerene: application of thin films based on them in organic electronics

PII
10.31857/S0044460X23090019-1
DOI
10.31857/S0044460X23090019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 9
Pages
1315-1325
Abstract
Hybrid molecules based on C60 fullerene and strained polycyclic hydrocarbons were synthesized for the first time using the Bingel-Hirsch reaction. Thin films based on the synthesized hybrid compounds were obtained, and the surface morphology of these films was studied. Based on thin films of С60 fullerene adducts containing fragments of conjugated polycyclic hydrocarbons, organic field-effect transistors were fabricated. The current-voltage characteristics of transistors were measured and the mobility of charge carriers was calculated.
Keywords
фуллерен С<sub>60</sub> гексаметанофуллерен напряженные полициклические углеводороды органические полевые транзисторы реакция Бингеля-Хирша
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Tuktarov A.R., Salikhov R.B., Khuzin A.A., Popod'ko N.R., Safargalin I.N., Mullagaliev I.N., Dzhemilev U.M. // RSC Adv. 2019. Vol. 9. P. 7505. doi 10.1039/C9RA00939F
  2. 2. Robin M., Harnois M., Molard Y., Jacques E. // Org. Electr. 2016. Vol. 39. P. 214. doi 10.1016/j.orgel.2016.10.004
  3. 3. Zhou K., Dong H., Zhang H.L., Hu W. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 22448. doi 10.1039/C4CP01700E
  4. 4. Wang C., Dong H., Hu W., Liu Y., Zhu D. // Chem. Rev. 2012. Vol. 112. P. 2208. doi 10.1021/cr100380z
  5. 5. Sadretdinova Z.R., Akhmetov A.R., Salikhov R.B., Mullagaliev I.N., Salikhov T.R. // Mend. Comm. 2023. Vol. 33. P. 320. doi 10.1016/j.mencom.2023.04.007
  6. 6. Chen L.-M., Hong Z., Li G., Yang Y. // Adv. Mater. 2009. Vol. 21. P. 1434. doi 10.1002/adma.200802854
  7. 7. Brabec C.J., Gowrisanker S., Halls I.I.M., Laird D., Jia S., Williams S.P. // Adv. Mater. 2010. Vol. 22. P. 3839. doi 10.1002/adma.200903697
  8. 8. Nelson J. // Mater. Today. 2011. Vol. 14. P. 462. doi 10.1016/S1369-7021(11)70210-3
  9. 9. Dang M.T., Hirsch L., Wantz G. // Adv. Mater. 2011. Vol. 23. P. 3597. doi 10.1002/adma.201100792
  10. 10. Han S.H., Kim G.M., Oh S.Y. // J. Nanosci. Nanotech. 2015. Vol. 15. P. 5446. doi 10.1166/jnn.2015.10371
  11. 11. Брень В.А., Дубоносов А.Д., Минкин В.И., Черноиванов В.А. // Усп. хим. 1991. Т. 60. С. 913
  12. 12. Bren' V.A., Dubonosov A.D., Minkin V.I., Chernoivanov V.A. // Russ. Chem. Rev. 1991. Vol. 60. P. 451. doi 10.1070/RC1991v060n05ABEH001088
  13. 13. Дубоносов А.Д., Брень В.А., Черноиванов В.А. // Усп. хим. 2002. Т. 71. С. 1040
  14. 14. Dubonosov A.D., Bren V.A., Chernoivanov V.A. // Russ. Chem. Rev. 2002. Vol. 71. P. 917. doi 10.1070/RC2002v071n11ABEH000745
  15. 15. Lorenz P., Hirsch A. // Chem. Eur. J. 2020. Vol. 26. P. 5220. doi 10.1002/chem.201904679
  16. 16. Bonfantini E.E., Officer D.L. // J. Chem. Soc. Chem Commun. 1994. P. 1445. doi 10.1039/C39940001445
  17. 17. Laine P., Marvaud V., Gourdon A., Launay J.-P., Argazzi R., Bignozzi C.-A. // Inorg. Chem. 1996. Vol. 35. P. 711. doi 10.1021/ic9507225
  18. 18. Fraysse S., Coudret C., Launay J.-P. // Eur. J. Inorg. Chem. 2000. P. 1581. doi10.1002/10990682(200007)2000:73.0.CO;2-2
  19. 19. Morino S., Watanabe T., Magaya Y., Yamashita T., Horie K., Nishikubo T. // J. Photopolym. Sci. Technol. 1994. Vol. 7. P. 121. doi 10.2494/photopolymer.7.121
  20. 20. Takahashi S., Samata K., Muta H., Machida S., Horie K. // Appl. Phys. Lett. 2001. Vol. 78. P. 13. doi 10.1063/1.1336164
  21. 21. Herges R., Reif W. // Lieb. Ann. Chem. 1996. P. 761. doi 10.1002/jlac.199619960519
  22. 22. Starck F., Jones P.G., Herges R. // Eur. J. Org. Chem. 1998. P. 2533. doi 10.1002/(SICI)10990690(199811)1998:113.0.CO;2-Q
  23. 23. Harada Y., Hatakeyama J., Kawai Y., Sasago M., Endo M., Kishimura S., Maeda K., Ootani M., Komoriya H. Pat. US 6.824.955.2004.
  24. 24. Myers H.K., Schneider A., Suld G. Pat. US 4207080 (1980).
  25. 25. Dzhemilev U.M., Khusnutdinov R.I., Aminov R.I., Tomilov Yu.V., Nefedov O.M., Kurbatov V.E., Vinogradova M.E., Tupakhina E.A. Pat. RU 2640204C2.2017.
  26. 26. Schrauzer G.N. // Tetrahedron Lett. 1970. P. 543. doi 10.1016/S0040-4039(01)97764-0
  27. 27. Bingel C. // Chem. Ber. 1993. Vol. 126. P. 1957. doi 10.1002/cber.19931260829
  28. 28. Camps X., Hirsch A. // J. Chem. Soc. Perkin Trans. 1. 1997. P. 1595. doi 10.1039/A702055D
  29. 29. Hirsch A., Vostrowsky O. // Eur. J. Org. Chem. 2001. Vol. 5. P. 829. doi 10.1002/10990690(200103)2001:53.0.CO;2-V
  30. 30. Yan W., Seifermann S.M., Pierrat P., Bräse S. // Org. Biomol. Chem. 2015. Vol. 13. P. 25. doi 10.1039/C4OB01663G
  31. 31. Palacios-Corella M., Ramos-Soriano J., Souto M., Ananias D., Calbo J., Ortí E., Illescas B.M., Clemente-León M., Martín N., Coronado E. // Chem. Sci. 2021. Vol. 12. P. 757. doi 10.1039/D0SC05875K
  32. 32. Xing Z., Li S.-H., Hui Y., Wu B.-S., Chen Z.-C., Yun D.-Q., Deng L.-L., Zhang M.-L., Mao B.-W., Xie S.-Y., Huang R.-B., Zheng L.-S. // Nano Energy. 2020. Vol. 74. P. 104859. doi 10.1016/j.nanoen.2020.104859
  33. 33. Аминов Р.И., Каримова И.М., Хуснутдинов Р.И. // ЖОрХ. 2020. Т. 56. С. 1431
  34. 34. Aminov R.I., Karimova I.M., Khusnutdinov R.I. // Russ. J. Org. Chem. 2020. Vol. 56. P. 1595. doi 10.1134/S1070428020090158
  35. 35. Lin M.-C., Yeh S.-J., Chen I-R., Lin G. // Protein J. 2011. Vol. 30. P. 220. doi 10.1007/s10930-011-9323-3
  36. 36. Khusnutdinov R.I., Egorova T.M., Khalilov L.M., Meshcheriakova E.S., Dzhemilev U.M. // Synthesis. 2018. Vol. 50. P. 1555. doi 10.1055/s-0036-1591881
  37. 37. Hollowood F.S., McKervey M.A., Hamilton R., Rooney J.J. // J. Org. Chem. 1980. Vol. 45. P. 4954. doi 10.1021/jo01312a026
  38. 38. Хуснутдинов Р.И., Муслимов З.С., Джемилев У.М., Нефедов О.М. // Изв. АН. Сер. xим. 1993. Т. 4. С. 728
  39. 39. Khusnutdinov R.I., Muslimov Z.S., Dzhemilev U.M., Nefedov O.M. // Russ. Chem. Bull. 1993. Vol. 42. P. 692. doi 10.1007/BF00704004
  40. 40. Джемилев У.М., Ахметов А.Р., Хузин А.А., Дьяконов В.А., Джемилева Л.У., Юнусбаева М.М., Халилов Л.М., Туктаров А.Р. // Изв. АН. Сер. xим. 2019. Т. 5. С. 1036
  41. 41. Dzhemilev U.M., Akhmetov A.R., Khuzin A.A., D'yakonov V.A., Dzhemileva L.U., Yunusbaeva M.M., Khalilov L.M., Tuktarov A.R. // Russ. Chem. Bull. 2019. Vol.68. P. 1036. doi 10.1007/s11172-019-2516-1
  42. 42. Salikhov R.B., Zilberg R.A., Mullagaliev I.N., Salikhov T.R., Teres Y.B. // Mendeleev Commun. 2022. Vol.32. P. 520. doi 10.1016/j. mencom.2022.07.029
  43. 43. Tuktarov A.R., Salikhov R.B., Khuzin A.A., Safargalin I.N., Mullagaliev I.N., Venidiktova O.V., Valova T.M., Barachevsky V.A., Dzhemilev U.M. // Mendeleev Commun. 2019. Vol. 29. P. 160. doi https: //doi.org/10.1016/j.mencom.2019.03.014
  44. 44. Dong J., Sami S., Balazs D.M., Alessandri R., Jahan, F., Qiu L., Marrink S.J., Havenith R.W.A., Hummelen J.C., Loi M.A., Portale G. // J. Mater. Chem. 2021. Vol. 100. P. 16217. doi 10.1039/D1TC02753K
  45. 45. Xing Z., Li S.-H., Hui Y., Wu B-S., Chen Z.-C., Yun D.-Q., Deng L.-L., Zhang M.-L., Mao B.-W., Xie S.-Y., Huang R.-B., Zheng L.-S. // Nano Energy. 2020. Vol. 74. P. 104859. doi 10.1016/j.nanoen.2020.104859
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library