- PII
- 10.31857/S0044460X23080152-1
- DOI
- 10.31857/S0044460X23080152
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 8
- Pages
- 1300-1306
- Abstract
- Nanocrystalline phosphors NaGd1- x Nd x F4 ( x = 0-1) were synthesized by hydrothermal synthesis for the first time. All the synthesized compounds have hexagonal β-NaYF4 crystalline phase. Neodymium(III) ions isomorphically replace gadolinium ions. NaGd0.96Nd0.04F4 compound has the largest photoemission intensity in NIR range upon 808 nm excitation; further doping with Nd3+ results in concentration quenching.
- Keywords
- люминофоры редкоземельные элементы гадолиний неодим микрочастицы твердые растворы
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Maciejewska K., Marciniak L. // Sci. Rep. 2023. Vol. 13. N 1. P. 472. doi 10.1038/s41598-022-27339-9
- 2. McMillen C., Comer S., Fulle K., Sanjeewa L., Kolis J. // Cryst. Eng. Mater. 2015. Vol 71. N 6. P. 768. doi 10.1107/S2052520615017916
- 3. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi 10.1021/acs.chemrev.1c00644
- 4. He X., Wu Y., Jiang Y., Liu J., Xiang X., Wen C., Li X., Wang F. // Chin. J. Lumin. 2022. Vol. 43. N 3. P. 350. doi 10.37188/CJL.20210391
- 5. Rosal B., Perez-Delgado A., Misiak M., Bednarkiewicz A., Vanetsev A., Orlovskii Y., Jovanovic D., Dramicanin M., Rocha U., Kumar U., Jacinto C., Navarro E., Rodriguez E., Pedroni M., Speghini A., Hirata G., Martin I., Jaque D. // J. App. Phys. 2015. Vol. 118. N 14. P. 143104. doi 10.1063/1.4932669
- 6. Kavand A., Serra C.A., Blanck C., Lenertz M., Anton N., Vandamme T. F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. P. 5319. doi 10.1021/acsanm.1c00664
- 7. Zhang X., Zhao Z., Zhang X. Cordes D., Weeks B., Qiu B., Madanan K., Sardar D., Chaudhuri J. // Nano Res. 2014. Vol. 8. N 2. P. 636. doi 10.1007/s12274-014-0548-2
- 8. Joubert M.F., Linarès C., Jacquier B., Cassanho A., Jenssen H.P. // J. Lumin. 1992. Vol. 51. P. 175. doi 10.1016/0022-2313(92)90052-B
- 9. Agbo P., Kanady J.S., Abergel R.J. // Front Chem. 2020 Vol. 8. doi 10.3389/fchem.2020.579942
- 10. Dong C., Pichaandi J., Regier T., van Veggel F.C.J.M. // J. Phys. Chem. (C). 2011. Vol. 115 N 32. P. 15950. doi10.1021/jp206441u
- 11. Xue X., Suzuki T., Tiwari R.N., Yoshimura M., Ohishi Y. // Japan. J. Appl. Phys. 2014. Vol. 53. P. 075001. doi 10.7567/JJAP.53.075001
- 12. Li X., You F., Peng H., Huang S. // J. Nanosci. Nanotechnol. 2016. Vol. 16. P. 3940. doi 10.1166/jnn.2016.11818
- 13. Zhang W., Zang Y., Lu Y., Han J., Xiong Q., Xiong J. // Nanomaterials. 2022. Vol. 12. P. 728. doi 10.3390/nano12050728
- 14. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi 10.3390/ma13153397
- 15. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. N. 5. C. 763. doi 10.31857/S0044460X21050140
- 16. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi 10.1134/S1070363221050145
- 17. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi 10.1039/d1nj02193a
- 18. Wang F., Liu X. // Acc. Chem. Res. 2014. Vol. 47. N 4. P. 1378. doi 10.1021/ar5000067
- 19. Shannon R.D. // Acta Crystallogr. (A). 1976. A32. P. 751. doi 10.1107/S0567739476001551
- 20. Denton A.R., Ashcroft N.W. // Phys. Rev. (A). 1991. Vol. 43. P. 3161. doi 10.1103/PhysRevA.43.3161
- 21. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi 10.3390/nano12172972
- 22. Qiao S., Zhang Y., Shi X., Jiang B., Zhang L., Cheng X., Li L., Wang J., Gui L. // Chinese Opt. Lett. 2015. Vol. 13. N 5. P. 051602. doi 10.3788/COL201513.051602
- 23. Li J., Wu Y., Pan Y., Liu W., Huang L., Guo J. // Opt. Mater. 2008. Vol. 31. N 1. P. 6. doi 10.1016/j.optmat.2007.12.014
- 24. Krämer K.W., Biner D., Frei G., Güdel H.U., Hehlen M.P., Lüthi S.R. // Chem. Mater. 2004. Vol. 16. N 7. P. 1244. doi 10.1021/cm031124o
- 25. Blasse G. // Philips Res. Rep. 1969. Vol. 24. N 2. P. 131. doi 10.1016/0375-9601(68)90486-6
- 26. Li D., Xu B., Huang Z., Jin X., Zhang Z., Zhang T., Wang D., Liu X., Li Q. // Nanomaterials. 2022. Vol. 12. N 20. doi 10.3390/nano12203641
- 27. Dexter D.L. // J. Chem. Phys. 1953. Vol. 21. N 5. P. 836. doi 10.1063/1.1699044
- 28. van Uitert I.G. // J. Electrochem. Soc. 1967. Vol. 114. N 10. P. 1048. doi 10.1149/1.2424184
- 29. Ozawa L., Jaffe P.M. // J. Electrochem. Soc. 1971. Vol. 118. N 10. P. 1978. doi 10.1149/1.2407810
- 30. Li H., Zhao R., Jia Y., Sun W., Fu J., Jiang L., Zhang S., Pang R., Li C. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 5. P. 3163. doi 10.1021/am4041493