RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Morphology and luminescent properties of nanocrystalline NaGdF4 phosphors doped with neodymium(III) ions

PII
10.31857/S0044460X23080152-1
DOI
10.31857/S0044460X23080152
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 8
Pages
1300-1306
Abstract
Nanocrystalline phosphors NaGd1- x Nd x F4 ( x = 0-1) were synthesized by hydrothermal synthesis for the first time. All the synthesized compounds have hexagonal β-NaYF4 crystalline phase. Neodymium(III) ions isomorphically replace gadolinium ions. NaGd0.96Nd0.04F4 compound has the largest photoemission intensity in NIR range upon 808 nm excitation; further doping with Nd3+ results in concentration quenching.
Keywords
люминофоры редкоземельные элементы гадолиний неодим микрочастицы твердые растворы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Maciejewska K., Marciniak L. // Sci. Rep. 2023. Vol. 13. N 1. P. 472. doi 10.1038/s41598-022-27339-9
  2. 2. McMillen C., Comer S., Fulle K., Sanjeewa L., Kolis J. // Cryst. Eng. Mater. 2015. Vol 71. N 6. P. 768. doi 10.1107/S2052520615017916
  3. 3. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi 10.1021/acs.chemrev.1c00644
  4. 4. He X., Wu Y., Jiang Y., Liu J., Xiang X., Wen C., Li X., Wang F. // Chin. J. Lumin. 2022. Vol. 43. N 3. P. 350. doi 10.37188/CJL.20210391
  5. 5. Rosal B., Perez-Delgado A., Misiak M., Bednarkiewicz A., Vanetsev A., Orlovskii Y., Jovanovic D., Dramicanin M., Rocha U., Kumar U., Jacinto C., Navarro E., Rodriguez E., Pedroni M., Speghini A., Hirata G., Martin I., Jaque D. // J. App. Phys. 2015. Vol. 118. N 14. P. 143104. doi 10.1063/1.4932669
  6. 6. Kavand A., Serra C.A., Blanck C., Lenertz M., Anton N., Vandamme T. F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. P. 5319. doi 10.1021/acsanm.1c00664
  7. 7. Zhang X., Zhao Z., Zhang X. Cordes D., Weeks B., Qiu B., Madanan K., Sardar D., Chaudhuri J. // Nano Res. 2014. Vol. 8. N 2. P. 636. doi 10.1007/s12274-014-0548-2
  8. 8. Joubert M.F., Linarès C., Jacquier B., Cassanho A., Jenssen H.P. // J. Lumin. 1992. Vol. 51. P. 175. doi 10.1016/0022-2313(92)90052-B
  9. 9. Agbo P., Kanady J.S., Abergel R.J. // Front Chem. 2020 Vol. 8. doi 10.3389/fchem.2020.579942
  10. 10. Dong C., Pichaandi J., Regier T., van Veggel F.C.J.M. // J. Phys. Chem. (C). 2011. Vol. 115 N 32. P. 15950. doi10.1021/jp206441u
  11. 11. Xue X., Suzuki T., Tiwari R.N., Yoshimura M., Ohishi Y. // Japan. J. Appl. Phys. 2014. Vol. 53. P. 075001. doi 10.7567/JJAP.53.075001
  12. 12. Li X., You F., Peng H., Huang S. // J. Nanosci. Nanotechnol. 2016. Vol. 16. P. 3940. doi 10.1166/jnn.2016.11818
  13. 13. Zhang W., Zang Y., Lu Y., Han J., Xiong Q., Xiong J. // Nanomaterials. 2022. Vol. 12. P. 728. doi 10.3390/nano12050728
  14. 14. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi 10.3390/ma13153397
  15. 15. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. N. 5. C. 763. doi 10.31857/S0044460X21050140
  16. 16. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi 10.1134/S1070363221050145
  17. 17. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi 10.1039/d1nj02193a
  18. 18. Wang F., Liu X. // Acc. Chem. Res. 2014. Vol. 47. N 4. P. 1378. doi 10.1021/ar5000067
  19. 19. Shannon R.D. // Acta Crystallogr. (A). 1976. A32. P. 751. doi 10.1107/S0567739476001551
  20. 20. Denton A.R., Ashcroft N.W. // Phys. Rev. (A). 1991. Vol. 43. P. 3161. doi 10.1103/PhysRevA.43.3161
  21. 21. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi 10.3390/nano12172972
  22. 22. Qiao S., Zhang Y., Shi X., Jiang B., Zhang L., Cheng X., Li L., Wang J., Gui L. // Chinese Opt. Lett. 2015. Vol. 13. N 5. P. 051602. doi 10.3788/COL201513.051602
  23. 23. Li J., Wu Y., Pan Y., Liu W., Huang L., Guo J. // Opt. Mater. 2008. Vol. 31. N 1. P. 6. doi 10.1016/j.optmat.2007.12.014
  24. 24. Krämer K.W., Biner D., Frei G., Güdel H.U., Hehlen M.P., Lüthi S.R. // Chem. Mater. 2004. Vol. 16. N 7. P. 1244. doi 10.1021/cm031124o
  25. 25. Blasse G. // Philips Res. Rep. 1969. Vol. 24. N 2. P. 131. doi 10.1016/0375-9601(68)90486-6
  26. 26. Li D., Xu B., Huang Z., Jin X., Zhang Z., Zhang T., Wang D., Liu X., Li Q. // Nanomaterials. 2022. Vol. 12. N 20. doi 10.3390/nano12203641
  27. 27. Dexter D.L. // J. Chem. Phys. 1953. Vol. 21. N 5. P. 836. doi 10.1063/1.1699044
  28. 28. van Uitert I.G. // J. Electrochem. Soc. 1967. Vol. 114. N 10. P. 1048. doi 10.1149/1.2424184
  29. 29. Ozawa L., Jaffe P.M. // J. Electrochem. Soc. 1971. Vol. 118. N 10. P. 1978. doi 10.1149/1.2407810
  30. 30. Li H., Zhao R., Jia Y., Sun W., Fu J., Jiang L., Zhang S., Pang R., Li C. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 5. P. 3163. doi 10.1021/am4041493
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library