RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Morphology and luminescent properties of NaYF4 microcrystalline upconversion materials doped with ytterbium(III) and holmium(III) ions

PII
10.31857/S0044460X23080140-1
DOI
10.31857/S0044460X23080140
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 8
Pages
1292-1299
Abstract
Microcrystalline upconversion materials NaY0.8- x Yb0.2Ho x F4 ( x = 0-0.1) were synthesized by hydrothermal synthesis for the first time. All the synthesized compounds have hexagonal β-NaYF4 crystalline phase. Holmium(III) ions isomorphically replace yttrium ions. The maximum upconversion emission intensity is observed for NaY0.78Yb0.2Ho0.02F4 in the visible region of the spectrum upon excitation at a wavelength of 973 nm.
Keywords
антистоксовая люминесценция редкоземельные элементы иттербий гольмий иттрий твердые растворы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi 10.1021/acs.chemrev.1c00644
  2. 2. Chen G., Qiu H., Prasad P. N., Chen X. // Chem. Rev. 2014. Vol. 114. N 10. P. 5161. doi 10.1021/cr400425h
  3. 3. Swieten T.P., Yu D., Yu T., Vonk S.J.W., Suta M., Zhang Q., Meijerink A., Rabouw F.T. // Adv. Optical Mater. 2021. Vol. 9. N 1. P. 2001518. doi 10.1002/adom.202001518
  4. 4. Tou M., Mei Y., Bai S., Luo Z., Zhanga Y., Li Z. // Nanoscale. 2016. Vol. 8. N 1. P. 553. doi 10.1039/c5nr06806a
  5. 5. Hu J., Wang R., Fan R., Huang Z., Liu Y., Guo G., Fu H. // J. Luminesc. 2020. Vol. 217. P. 116812. doi 10.1016/j.jlumin.2019.116812
  6. 6. Kavand A., Serra C. A., Blanck C., Lenertz M., Anton N., Vandamme T.F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. N 5. P. 5319. doi 10.1021/acsanm.1c00664
  7. 7. Zhang J.-z., Xia H.-p., Yang S., Jiang Y.-z., Gu X.-m., Zhang J.-l., Jiang H.-c., Chen B.-j. // Chinese J. Chem. Phys. 2015. Vol. 28. P. 351. doi 10.1063/1674-0068/28/cjcp1503042.
  8. 8. Yu D.C., Huang X.Y., Ye S., Zhang Q.Y. // J. Alloys Compd. 2011. Vol. 509. P. 9919. doi 10.1016/j.jallcom.2011.07.088
  9. 9. Gao W., Sun Z., Han Q., Zhang J., Yan X., Ge H., Dong J. // Mater. Res. Bull. 2018. Vol. 108. P. 10. doi 10.1016/j.materresbull.2018.08.025
  10. 10. Chen Y., Hao X., Zhou J., Jiao Y., He W., Wang H., Lu J., Yang S. // Mater. Lett. 2012. Vol. 83. P. 49. doi 10.1016/j.matlet.2012.05.122
  11. 11. Yu D.C., Ye S., Huang X.Y., Zhang Q.Y. // AIP Adv. 2012. Vol. 2. P. 022124. doi 10.1063/1.4718412
  12. 12. Dong M., Li X., Chi F., Wei X., Yin M., Chen Y. // J. Rare Earths. 2017. Vol. 35. N 7. P. 629. doi 10.1016/s1002-0721(17)60956-6
  13. 13. Lingeshwar Reddy K., Srinivas V., Shankar K.R., Kumar S., Sharma V., Kumar A., Bahuguna A., Bhattacharyya K., Krishnan V. // J. Phys. Chem. (C). 2017. Vol. 121 N 21. P. 11783. doi 10.1021/acs.jpcc.7b01334
  14. 14. Gao W., Zheng H., Han Q., He E., Wang R. // Cryst. Eng. Commun. 2014. Vol. 16. N 29. P. 6697. doi 10.1039/c4ce00627e
  15. 15. Ye S., Chen G., Shao W., Qu J., Prasad P.N. // Nanoscale. 2015. Vol. 7. P. 3976. doi 10.1039/c4nr07678h
  16. 16. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi 10.3390/ma13153397.
  17. 17. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. № 5. C. 763. doi 10.31857/S0044460X21050140
  18. 18. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi 10.1134/S1070363221050145
  19. 19. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi 10.1039/d1nj02193a
  20. 20. Yi G.D., Chow G.M. // Adv. Funct. Mater. 2006. Vol. 16. N 18 P. 2324. doi 10.1002/adfm.200600053
  21. 21. Liu X., Zhao J., Sun Y., Song K., Yu Y., Du C., Kong X., Zhang H. // Chem. Commun. 2009. Vol. 43. P. 6628. doi10.1039/b915517a
  22. 22. Zhou S., Deng K., Wei X., Jiang G., Duan C., Chen Y., Yin M. // Opt. Commun. 2013. Vol. 291. P. 138. doi 10.1016/j.optcom.2012.11.005
  23. 23. Wang F., Liu X. // Acc. Chemi. Res. 2014. Vol. 47. N 4. P. 1378. doi 10.1021/ar5000067
  24. 24. Shannon R.D. // Acta Crystallogr. (A). 1976. Vol. 32. P. 751. doi 10.1107/S0567739476001551
  25. 25. Szefczyk B., Roszak R., Roszak S. // RSC Adv. 2014. Vol. 4. N 43. P. 22526. doi 10.1039/c4ra00211c
  26. 26. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi 10.3390/nano12172972
  27. 27. Pandey A., Rai V.K. // Dalton Trans. 2013. Vol. 42. N 30. P. 11005. doi 10.1039/c3dt50592h.
  28. 28. Syamchand S.S., George S. // J. Nanopart. Res. 2016. Vol. 18. N 12. P. 385. doi 10.1007/s11051-016-3699-0
  29. 29. Miao J., Su J., Wen Y., Rao W. // J. Alloys Compd. 2015. Vol. 636. P. 8. doi 10.1016/j.jallcom.2015.02.129
  30. 30. Singh N.S., Ningthoujam R.S., Luwang M.N., Singh S.D., Vatsa R.K. // Chem. Phys. Lett. 2009. Vol. 480. P. 237. doi 10.1016/j.cplett.2009.09.006
  31. 31. Galleani G., Santagneli S.H., Lendemi Y., Messaddeq Y. // J. Phys. Chem. 2018. Vol. 122. N 4. P. 2275. doi 10.1021/acs.jpcc.7b09562
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library