RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis of silicon dioxide xerogels and their sorption- desorption properties with respect to nicotine and glycols

PII
10.31857/S0044460X23080139-1
DOI
10.31857/S0044460X23080139
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 8
Pages
1281-1291
Abstract
Composites based on silicon dioxide xerogels containing glycerol and nicotine were prepared by hydrolysis of tetraethoxysilane by a single-stage synthesis and two-stage sorption method with a single-stage glycerol sorption in relation to the sorbent reaches 3: 1 by weight. The kinetics of release (desorption) of nicotine from an aerosol mixture with glycols has been studied. The synthesized sorbent is promising for use in aerosol generating systems, as well as carriers and delivery systems for biologically active substances and medicines.
Keywords
тетраэтоксисилан гидролиз ксерогель глицерин никотин сорбция-десорбция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Hoffmann F., Cornelius M., Morell J., Froba M. // Angew. Chem. Int. Ed. 2006. Vol. 45. N 20. P. 3216. doi 10.1002/anie.200503075
  2. 2. Simovic S., Ghouchi-Eskandar N., Moom Sinn A., Losic D., Prestidge D. // Curr. Drug Discov. Technol. 2011. N 8. P. 250. doi 10.2174/157016311796799026
  3. 3. Mamaeva V., Sahlgren C., Lindén M. // Adv. Drug Deliv. Rev. 2013. Vol. 65. N 5. P. 689. doi 10.1016/j.addr.2012.07.018
  4. 4. Şen Karaman D., Kettiger H. In: Inorganic Frameworks as Smart Nanomedicines / Ed. A.M. Grumezescu. Elsevier, 2018. P. 1.
  5. 5. Li T., Geng T., Md A., Banerjee P., Wang B. // Colloids Surfaces (B). 2019. Vol. 176. P. 185. doi 10.1016/j.colsurfb.2019.01.004
  6. 6. Hua Q., Lu W., Zheng S., Zhang Y., Zhang W., Wu D., Shen Y. // Thermochim. Acta. 2017. Vol. 656. P. 53. doi 10.1016/j.tca.2017.08.013
  7. 7. Qian K.K., Bogner R.H. // J. Pharm. Sci. 2012. Vol. 101. N 2. P. 444. doi 10.1002/jps.22779
  8. 8. Narayan R., Nayak U., Raichur A., Garg S. // Pharmaceutics. 2018. Vol. 10. N 3. P. 118. doi 10.3390/pharmaceutics10030118
  9. 9. Stöber W., Fink A., Bohn E. // J. Colloid Interface Sci. 1968. Vol. 26. N 1. P. 62. doi 10.1016/0021-9797(68)90272-5
  10. 10. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Schlenker J.L. // J. Am. Chem. Soc. 1992. Vol. 114. N 27. P. 10834. doi 10.1021/ja00053a020
  11. 11. Zhao D. // Science. 1998. Vol. 279. N 5350. P. 548. doi 10.1126/science.279.5350.548
  12. 12. Пат. РФ 2382046 С1; Б. И. 2010. № 5.
  13. 13. Пат. РФ 2255939 С2; Б. И. 2005. № 19.
  14. 14. Khonina T.G., Safronov A.P., Ivanenko M.V., Shadrina E.V., Chupakhin O.N. // J. Mat. Chem. (B). 2015. N 3. P. 5490. doi 10.1039/c5tb00480b
  15. 15. Klein L.C., Garvey G.J. // Mat. Res. Soc. Symp. Proc. 1984. Vol. 32. P. 33.
  16. 16. Donatti D.A., Dimas R.V. // J. Sol-Gel Sci. Technol. 2000. Vol. 17. P. 19.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library