RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Quantum-chemical study of еhe binding energy of lithium ion endofullerene li+@C60 with anion

PII
10.31857/S0044460X23060173-1
DOI
10.31857/S0044460X23060173
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 6
Pages
978-984
Abstract
The optimal geometry, binding energy Δ E ion pairs of type Li+@C60·A- (A = BF4, AsF6, PF6, FSI, TFSI, 4F-BB) in vacuum and chlorobenzene medium were calculated using the method of density functional theory. ΔE values were found to decrease significantly in chlorobenzene medium depending on the nature of the anion. In the structures of Li+@C60·A-, various contacts C···F, C···O, C···C, C···N and Li···C were established, which, within the framework of Bader’s theory, “atoms in molecules” were assigned to interactions of closed shells, and their energy is calculated.
Keywords
эндофуллерен иона лития анион теория функционала плотности энергия связывания поляризуемый континуум
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Ярмоленко О.B., Юдина А.В., Игнатов А.А. // Электрохимическая энергетика. 2016. Т. 16. № 4. С. 155. doi 10.18500/1608-4039-2016-16-4-155-195
  2. 2. Aoyagi S., Nishibori E., Hiroshi Sawa H., Kunihisa Sugimoto K., Takata M., Miyata Y., Kitaura R., Shinohara H., Okada H., Sakai T, Ono Y., Kawachi K., Yokoo K., Ono S., Omote K., Kasama Y., Ishikawa S., Komuro T., Tobita H. // Nature Chemistry. 2010. Vol. 2(8). P.678. doi 10.1038/nchem.698
  3. 3. Aoyagi S., Sado Y., Nishibori E., Sawa H., Okada H., Tobita H., Kasama Y., Kitaura R., Shinohara H. // Angew. Chem. Int. Ed. 2012. Vol. 51. P. 3377. doi 10.1002/anie.201108551
  4. 4. Ueno H., Kokubo K., Nakamura Y., Ohkubo K., Ikuma N., Moriyama H., Fukuzumibd S., Oshima T. // Chem. Commun. 2013. Vol. 49. P. 7376. doi 10.1039/c3cc43901a
  5. 5. Kalhoff J., Bresser D., Bolloli M., Alloin F., Sanchez J.-Y., and Passerini S. // ChemSusChem.2014. N 7(10). P. 2939. doi 10.1002/cssc.201402502
  6. 6. Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K. // Science. 2015. Vol. 350. N 6263. P. 938. doi 10.1126/science.aab1595
  7. 7. Jónsson E., Johansson P. // Phys. Chem. Chem. Phys. 2012. Vol. 14. P.10774. doi 10.1039/C2CP40612H
  8. 8. Liu Z., Chai J., Xu G., Wang Q., Cui G. // Coord. Chem. Rev. 2015. Vol. 292. P. 56. doi 10.1016/j.ccr.2015.02.011
  9. 9. Михайлов Г.П. // ЖОХ. 2018. Т. 88. Вып. 11. С. 1858
  10. 10. Mikhailov G.P. // Russ. J. Gen. Chem. 2018. Vol. 88. N 11. P. 2335. doi 10.1134/S0044460X18110148
  11. 11. Bader R.F.W. Atoms in Molecules. A Quantum Theory. Oxford: Clarendon Press, 1990. 458 p.
  12. 12. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. Vol. 285. N 3-4. P. 170. doi 10.1016/S0009-2614 (98)00036-0
  13. 13. Cremer D., Kraka E. // Croat. Chem. Acta. 1984. Vol. 57. P.1259.
  14. 14. Antoine R., Rayane D., Benichou E., Dugourd Ph., Broyer M. // Eur. Phys. J. D. 2000. Vol. 12. P. 147. doi 10.1007/s100530070051
  15. 15. Oliveira O.V., Gonçalves A.S. // Comput. Chem. 2014. Vol. 2. P. 51. doi 10.4236/cc.2014.2400
  16. 16. Bai H., Gao H., Feng W., Zhao Y., Wu Y. // Nanomaterials. 2019. Vol. 9. N 4. P. 630. doi 10.3390/nano 9040630
  17. 17. Шишкина С.В., Зубатюк Р.И., Кучеренко Л.И., Парнюк Н.В., Мазур И.А., Георгиевский Г.В., Шишкин О.В. // Изв. АН. Сер. хим. 2013. Т. 62. № 8. С. 1900
  18. 18. Shishkin S.V., Zubatyuk R.I., Shishkina O.V., Kucherenko L.I., Parnyuk N.V., Mazur I.A., Georgievskii G.V. // Russ. Chem. Bull. 2013. Vol. 62. N 8. P. 1900. doi 10.1007/s11172-013-0273-0
  19. 19. Maiyelvaganan K.R., Prakash M., Ravva M.K. // Comput. Theor. Chem. 2022. Vol. 1209. P. 113601. doi 10.1016/j.comptc.2022.113601
  20. 20. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T.
  21. 21. Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. GAUSSIAN 09, Revision A.1. Gaussian, Inc., Wallingford, CT, 2009.
  22. 22. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (B). 2009. Vol. 113. P. 6378. doi 10.1021/jp810292
  23. 23. Zhurko Z.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
  24. 24. Keith T.A. AIMAll (Version. 10.05.04), http://aim.tkgristmill.com
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library