- PII
- 10.31857/S0044460X23060173-1
- DOI
- 10.31857/S0044460X23060173
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 6
- Pages
- 978-984
- Abstract
- The optimal geometry, binding energy Δ E ion pairs of type Li+@C60·A- (A = BF4, AsF6, PF6, FSI, TFSI, 4F-BB) in vacuum and chlorobenzene medium were calculated using the method of density functional theory. ΔE values were found to decrease significantly in chlorobenzene medium depending on the nature of the anion. In the structures of Li+@C60·A-, various contacts C···F, C···O, C···C, C···N and Li···C were established, which, within the framework of Bader’s theory, “atoms in molecules” were assigned to interactions of closed shells, and their energy is calculated.
- Keywords
- эндофуллерен иона лития анион теория функционала плотности энергия связывания поляризуемый континуум
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Ярмоленко О.B., Юдина А.В., Игнатов А.А. // Электрохимическая энергетика. 2016. Т. 16. № 4. С. 155. doi 10.18500/1608-4039-2016-16-4-155-195
- 2. Aoyagi S., Nishibori E., Hiroshi Sawa H., Kunihisa Sugimoto K., Takata M., Miyata Y., Kitaura R., Shinohara H., Okada H., Sakai T, Ono Y., Kawachi K., Yokoo K., Ono S., Omote K., Kasama Y., Ishikawa S., Komuro T., Tobita H. // Nature Chemistry. 2010. Vol. 2(8). P.678. doi 10.1038/nchem.698
- 3. Aoyagi S., Sado Y., Nishibori E., Sawa H., Okada H., Tobita H., Kasama Y., Kitaura R., Shinohara H. // Angew. Chem. Int. Ed. 2012. Vol. 51. P. 3377. doi 10.1002/anie.201108551
- 4. Ueno H., Kokubo K., Nakamura Y., Ohkubo K., Ikuma N., Moriyama H., Fukuzumibd S., Oshima T. // Chem. Commun. 2013. Vol. 49. P. 7376. doi 10.1039/c3cc43901a
- 5. Kalhoff J., Bresser D., Bolloli M., Alloin F., Sanchez J.-Y., and Passerini S. // ChemSusChem.2014. N 7(10). P. 2939. doi 10.1002/cssc.201402502
- 6. Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K. // Science. 2015. Vol. 350. N 6263. P. 938. doi 10.1126/science.aab1595
- 7. Jónsson E., Johansson P. // Phys. Chem. Chem. Phys. 2012. Vol. 14. P.10774. doi 10.1039/C2CP40612H
- 8. Liu Z., Chai J., Xu G., Wang Q., Cui G. // Coord. Chem. Rev. 2015. Vol. 292. P. 56. doi 10.1016/j.ccr.2015.02.011
- 9. Михайлов Г.П. // ЖОХ. 2018. Т. 88. Вып. 11. С. 1858
- 10. Mikhailov G.P. // Russ. J. Gen. Chem. 2018. Vol. 88. N 11. P. 2335. doi 10.1134/S0044460X18110148
- 11. Bader R.F.W. Atoms in Molecules. A Quantum Theory. Oxford: Clarendon Press, 1990. 458 p.
- 12. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. Vol. 285. N 3-4. P. 170. doi 10.1016/S0009-2614 (98)00036-0
- 13. Cremer D., Kraka E. // Croat. Chem. Acta. 1984. Vol. 57. P.1259.
- 14. Antoine R., Rayane D., Benichou E., Dugourd Ph., Broyer M. // Eur. Phys. J. D. 2000. Vol. 12. P. 147. doi 10.1007/s100530070051
- 15. Oliveira O.V., Gonçalves A.S. // Comput. Chem. 2014. Vol. 2. P. 51. doi 10.4236/cc.2014.2400
- 16. Bai H., Gao H., Feng W., Zhao Y., Wu Y. // Nanomaterials. 2019. Vol. 9. N 4. P. 630. doi 10.3390/nano 9040630
- 17. Шишкина С.В., Зубатюк Р.И., Кучеренко Л.И., Парнюк Н.В., Мазур И.А., Георгиевский Г.В., Шишкин О.В. // Изв. АН. Сер. хим. 2013. Т. 62. № 8. С. 1900
- 18. Shishkin S.V., Zubatyuk R.I., Shishkina O.V., Kucherenko L.I., Parnyuk N.V., Mazur I.A., Georgievskii G.V. // Russ. Chem. Bull. 2013. Vol. 62. N 8. P. 1900. doi 10.1007/s11172-013-0273-0
- 19. Maiyelvaganan K.R., Prakash M., Ravva M.K. // Comput. Theor. Chem. 2022. Vol. 1209. P. 113601. doi 10.1016/j.comptc.2022.113601
- 20. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T.
- 21. Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. GAUSSIAN 09, Revision A.1. Gaussian, Inc., Wallingford, CT, 2009.
- 22. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (B). 2009. Vol. 113. P. 6378. doi 10.1021/jp810292
- 23. Zhurko Z.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
- 24. Keith T.A. AIMAll (Version. 10.05.04), http://aim.tkgristmill.com