RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Sulfur solubility in sulfolane electrolytes for lithium-sulfur batteries

PII
10.31857/S0044460X23050165-1
DOI
10.31857/S0044460X23050165
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 5
Pages
813-820
Abstract
The solubility of sulfur in sulfolane and sulfolane solutions of lithium salts [LiBF4, LiClO4, LiPF6, LiSO3CF3 and LiN(SO2CF3)2], promising electrolytes for lithium-sulfur batteries, was determined by UV-vis spectroscopy. It was found that the solubility of sulfur in sulfolane at 30°C is 82.0 mM, and in sulfolane solutions of lithium salts (1 M) is 4-9 times lower than in pure sulfolane. The dependence of sulfur solubility on the concentration of lithium salts is not linear, it is 32.9 and 5.8 mM for sulfolane solutions of 0.5 М LiClO4 and 2.35 M LiClO4, respectively.
Keywords
растворимость серы сульфолан литиевые соли электронные спектры поглощения литий-серные аккумуляторы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Zhang S.S. // J. Power Sources. 2013. Vol. 231. P. 153. doi 10.1016/j.jpowsour.2012.12.102
  2. 2. Zu C.-X., Li H. // Energy Environ. Sci. 2011. Vol. 4. P. 2614. doi 10.1039/c0ee00777c
  3. 3. Sciamanna S.F., Lynn S. // Ind. Eng. Chem. Res. 1988. Vol. 27. N 3. P. 485.
  4. 4. Zheng D., Zhang X., Li C., McKinnon M.E., Sadok R.G., Qu D., Yu X., Lee H.-S., Yang X.-Q., Qu D. // J. Electrochem. Soc. 2015. Vol. 162. N 1. P. A203. doi 10.1149/2.1011501jes
  5. 5. Harks P.P.R.M.L., Robledo C.B., Verhallen T.W., Notten P.H.L., Mulder F.M. // Adv. Energy Mater. 2016. Article no. 1601635. doi 10.1002/aenm.201601635
  6. 6. Park J.W., Yamauchi K., Takashima E., Tachikawa N., Ueno K., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. N 9. P. 4431. doi 10.1021/jp400153m
  7. 7. Ueno K., Park J.-W., Yamazaki A., Mandai T., Tachikawa N., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. P. 20509. dx.doi.org/10.1021/jp407158y
  8. 8. Vaughn J.W., Hawkins C.F. // J. Chem. Eng. Data. 1964. Vol. 9. P. 140. doi 10.1021/je60020a047
  9. 9. Burwell R.L., Langford C.H. // J. Am. Chem. Soc. 1959. Vol. 81. P. 3799. doi 10.1021/ja01523a079
  10. 10. Xu K., Angell C.A. // Electrochem. Soc. 2002. Vol. 149. N 7. P. A920. doi 10.1149/1.1483866
  11. 11. Колосницын В.С., Шеина Л.В., Мочалов С.Э. // Электрохимия. 2008. Т. 44. Вып. 5. С. 620
  12. 12. Kolosnitsyn V.S., Sheina L.V., Mochalov S.E. // Russ. J. Electrochem. 2008. Vol. 44. N 5. P. 575. doi 10.1134/S102319350805011X
  13. 13. Kolosnitsyn V.S., Kuzmina E.V., Karaseva E.V. // ECS Transaction. 2009. Vol. 19. P. 25. doi 10.1149/1.3247062
  14. 14. Karaseva E.V., Khramtsova L.A., Lobov A.N., Kuzmina E.V., Eroglu D., Kolosnitsyn V.S. // J. Power Sources. 2022. Vol. 548. Article no. 231980. doi 10.1016/j.jpowsour.2022.231980
  15. 15. Nakanishi A., Ueno K., Watanabe D., Ugata Y., Matsumae Y., Liu J., Thomas M.L., Dokko K., Watanabe M. // J. Phys. Chem. (C). 2019. Vol. 123. N 23. P. 14229. doi 10.1021/acs.jpcc.9b02625
  16. 16. Wang, Y., Xing, L., Li, W., Bedrov, D. // J. Phys. Chem. Lett. 2013. Vol. 4. P. 3992. doi 10.1021/jz401726p
  17. 17. Jow T.R., Xu K., Borodin O., Ue M. Electrolytes for lithium and lithium-ion batteries. Modern aspects of electrochemistry. Springer Science+Business Media, 2014. Vol. 58. P. 476. doi 10.1007/978-1-4939-0302-3
  18. 18. Yoon S., Lee Y.-H., Shin K.-H., Cho S.B., Chung W.J. // Electrochim. Acta. 2014. Vol. 145. P. 170. doi 10.1016/j.electacta.2014.09.007
  19. 19. Linert W., Jameson R.F., Taha A. // J. Chem. Soc. Dalton Trans. 1993. Vol. 21. P. 3181. doi 10.1039/DT9930003181
  20. 20. Linert W., Camard A., Armand M., Michot C. // Coord. Chem. Rev. 2002. Vol. 226. P. 137. doi 10.1016/S0010-8545(01)00416-7
  21. 21. Naejus R., Coudert R., Willmann P., Lemordant D. // Electrochim. Acta. 1998. Vol. 43. N 3-4. P. 275. doi 10.1016/s0013-4686(97)00073-x
  22. 22. Salomon M. // J. Solution Chem. 1993. Vol. 22. N 8. P. 715. doi 10.1007/bf00647411
  23. 23. Han H.-B., Zhou S.-S., Zhang D.-J., Feng S.-W., Li L.-F., Liu K., Feng W.-F., Nie J., Li H., Huang X.-J., Armand M., Zhou Z.-B // J. Power Sources. 2011. Vol. 196. P. 3623. doi 10.1016/j.jpowsour.2010.12.040
  24. 24. Košir U., Cigi I.K., Markelj J., Talian S.D., Dominko R. // Electrochim. Acta. 2020. Vol. 363. Article 137227. doi 10.1016/j.electacta.2020.137227
  25. 25. Cañas N.A. PhD Dissert. (Dr.-Ing.). Stuttgart, 2015. 189 p.
  26. 26. Steudel R., Jensen D., Gobel P., Hugo P. // Ber. Buns. physik. Chem. 1988. Vol. 92. N 2 P. 118. doi 10.1002/bbpc.198800031
  27. 27. Heatley X.G., Page E.J. // Analyt. Chem. 1952. Vol. 24. N 11. P. 1854. doi 10.1021/AC60071A047
  28. 28. Karaseva E.V., Kuzmina E.V., Kolosnitsyn D.V., Shakirova N.V., Sheina L.V., Kolosnitsyn V.S. // Electrochim. Acta. 2019. Vol. 296. P. 1102. doi 10.1016/j.electacta.2018.11.019
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library