RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Features of complex formation of native and polymeric β-cyclodextrins with sulfasalazine

PII
10.31857/S0044460X2305013X-1
DOI
10.31857/S0044460X2305013X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 5
Pages
785-793
Abstract
The work is devoted to the study of the complex formation of sulfasalazine with native and polymeric β-cyclodextrins in buffer solutions with a physiological pH value using isothermal saturation and 1H NMR methods. It was established that sulfasalazine forms two types of complexes when interacting with the cyclodextrins under consideration, but only the process of formation of inclusion complexes determines the observed increase in drug solubility, which is more pronounced in the presence of polymeric β-cyclodextrin. It was determined that complexation with β-cyclodextrin and its polymeric derivative leads to a decrease in the permeability coefficients of sulfasalazine through the model membrane, which is determined by both the stability constant of the complexes and their ability to pass through the membrane.
Keywords
β-циклодекстрин полимер сульфасалазин комплексообразование солюбилизация
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Plosker G.L., Croom K.F. // Drugs. 2005. Vol. 65. N 13. P. 1825. doi 10.2165/00003495-200565130-00008
  2. 2. Gassull M.A., Cabre E. In: Crohn's Disease and Ulcerative Colitis / Ed. D.C. Baumgart. Berlin: Springer International Publishing AG, 2017. P. 311.
  3. 3. Shadid M., Gurau G., Shamshina J.L., Chuang B.-C., Hailu S., Guan E., Chowdhury S.K., Wu J.-T., Rizvi S.A.A., Griffin R.J., Rogers R.D. // Med. Chem. Commun. 2015. Vol. 6. P. 1837. doi 10.1039/C5MD00290G
  4. 4. Куранов Д.Ю., Чибунова Е.С., Волкова Т.В., Терехова И.В. // Рос. хим. ж. 2016. Т. 60. № 1. С. 55
  5. 5. Kuranov D.Yu., Chibunova E.S., Volkova T.V., Terekhova I.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1325. doi 10.1134/S1070363218060439
  6. 6. Shadid M., Gurau G., Shamshina J.L., Chuang B-C., Hailu S., Guan E., Chowdhury S., Wu J-T., Rizvi S.A.A., Griffin R. J., Rogers R. D. // Med. Chem. Commun. 2015. Vol. 6. P. 1837. doi 10.1039/x0xx00000x
  7. 7. Wu W-Y, Su C-S // J. Cryst. Growth. 2017. Vol. 460. P. 59. doi 10.1016/j.jcrysgro.2016.12.017
  8. 8. Chen X., Li D., Zhang H., Duan Y., Huang Y. // Mol. Pharm. 2022. Vol. 19. N 11. P. 4370. doi 10.1021/acs.molpharmaceut.2c00785
  9. 9. Orooji Y., Mortazavi-Derazkola S., Ghoreishi S.M., Amiri M., Salavati-Niasari M. // J. Hazard. Mater. 2020. Vol. 400. Article no. 123140. doi 10.1016/j.jhazmat.2020.123140
  10. 10. Jicsinszky L., Martina K. Cravotto G. // J. Drug Deliv. Sci. Technol. 2021. Vol. 64. Article no. 102589. doi 10.1016/j.jddst.2021.102589
  11. 11. Braga S.S. // J. Drug Deliv. Sci. Technol. 2022. Vol. 75. Article no. 103650. doi 10.1016/j.jddst.2022.103650
  12. 12. Asija R., Asija S., Lamba H.S., Bhandari A., Kataria S. // Res. J. Pharm. Technol. 2012. Vol. 5. N. 1. P. 53.
  13. 13. Zhou Y.-Q., Huang J., Han P.-F., Lv X.-P. // Asian J. Chem. 2012. Vol. 24. N 5. P. 1991.
  14. 14. Osman S.K., Soliman G.M., Amin M., Zaky A. // Int. J. Pharm. Pharm. Sci. 2014. Vol. 6. N 7. P. 59.
  15. 15. Crini G. // Environ. Chem. Lett. 2021. Vol. 19. P. 2383. doi 10.1007/s10311-021-01204-z
  16. 16. Simões S.M.N., Rey-Rico A., Concheiro A., Alvarez-Lorenzo C. // Chem. Commun. 2015. Vol. 51. P. 6275. doi 10.1039/C4CC10388B
  17. 17. Folch-Cano C., Yazdani-Pedram M., Olea-Azar C. // Molecules. 2014. Vol. 19. N 9. P. 14066. doi 10.3390/molecules190914066
  18. 18. Shekhawat P.B., Pokharkar V.B. // Acta Pharm. Sin. (B). 2017. Vol. 7. N 3. P. 260. doi 10.1016/j.apsb.2016.09.005
  19. 19. Yang J., Li K., He D., Gu J., Xu J., Xie J., Zhang M., Liu Y., Tan Q. Zhang J. // Drug Metab. Rev. 2020. Vol. 52. P. 19. doi 10.1080/03602532.2020.1714646
  20. 20. Loftsson T., Vogensen S.B., Brewster M.E., Konráðsdóttir F. // J. Pharm. Sci. 2007. Vol. 96. N. 10. P. 2532. doi 10.1002/jps.20992
  21. 21. Loftsson T., Jarho P., Másson M. Järvinen T. // Expert Opin Drug Deliv. 2005. Vol. 2. N 2. P. 335-351. doi 10.1517/17425247.2.1.335
  22. 22. Dahan A., Beig A., Lindley D., Miller J.M. // Adv. Drug Deliv. Rev. 2016. Vol. 101. P. 99. doi 10.1016/j.addr.2016.04.018
  23. 23. Păduraru D.N., Niculescu A.-G., Bolocan A., Andronic O., Grumezescu A.M., Birla R. // Pharmaceutics. 2022. Vol. 14. N 8. P. 1748. doi 10.3390/pharmaceutics14081748
  24. 24. R. Periasamy // J. Carbohydr. Chem. 2021. Vol. 40. P. 135. doi 10.1080/07328303.2021.1967970
  25. 25. Higuchi T., Connons K.A. // Adv. Anal. Chem. Instrum. 1965. Vol. 4. P. 117.
  26. 26. Jesus M.B, Fraceto L.F., Martini M.F., Pickholz M., Ferreira C.V., Paula E. // J. Pharm. Pharmacol. 2012. Vol. 64. N 6. P. 832. doi 10.1111/j.2042-7158.2012.01492.x
  27. 27. Terekhova I.V., Kumeev R.S., Alper G.A. // J. Incl. Phenom. Macrocycl. Chem. 2007. Vol. 59. P. 301. doi 10.1007/s10847-007-9327-y
  28. 28. Brandl M., Flaten G.E., Bauer-Brandl A. In: Wiley Encyclopedia of Chemical Biology / Ed. T.P. Begley. Hoboken: John Wiley & Sons, Inc., 2008. Р. 3204.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library