RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Development of a reproducible and scalable method for the synthesis of biologically active pyrazolo[1,5-a]pyrimidine derivatives

PII
10.31857/S0044460X23050049-1
DOI
10.31857/S0044460X23050049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 5
Pages
684-694
Abstract
A reproducible and scalable method for the synthesis was developed, and a series of 3,6-substituted pyrazolo[1,5- a ]pyrimidines, which are the basis for the rational design of selective inhibitors of AMP-activated protein kinase, was obtained and characterized. In the course of the formation of new types of carbon skeleton, the possibility of applying Suzuki-Miyaura cross-coupling with Buchwald ligands to form C-C bond in the sterically hindered position 6 of 5,7-dimethyl-substituted pyrazolo[1,5- a ]pyrimidine was shown.
Keywords
пиразоло[1,5-a]пиримидин пиридин-1H-пиразол-5-амин ингибитор АМФК кросс-сочетание
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Trefts E., Shaw R.J. // Mol. Cell. 2021. Vol. 81. N 18. P. 3677. doi 10.1016/j.molcel.2021.08.015
  2. 2. Tarasiuk O., Miceli M., Di Domizio A., Nicolini G. // Biology. 2022. Vol. 11. N 7. P. 1041. doi 10.3390/biology11071041
  3. 3. Новикова Д.С., Гарабаджиу А.В., Мелино Дж., Барлев Н.А., Трибулович В.Г. // Изв. АН. Сер. хим. 2015. № 7. С. 1497
  4. 4. Novikova D.S., Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. // Russ. Chem. Bull. 2015. Vol. 64. N 7. P. 1497. doi 10.1007/s11172-015-1036-x
  5. 5. Russell F.M., Hardie D.G. // Int. J. Mol. Sci. 2021. Vol. 22. N 1. P. 186. doi 10.3390/ijms22010186
  6. 6. Novikova D.S., Grigoreva T.A., Ivanov G.S., Barlev N.A., Tribulovich V.G. // ChemMedChem. 2020. Vol. 15. N 24. P. 2521. doi 10.1002/cmdc.202000579
  7. 7. Novikova D.S., Grigoreva T.A., Zolotarev A.A., Garabadzhiu, A.V., Tribulovich, V.G. // RSC Adv. 2018. Vol. 8. N 60., P. 34543. doi 10.1039/C8RA07576J
  8. 8. Dasgupta B., Seibel W. // Methods Mol. Biol. 2018. Vol. 1732. P. 195. doi 10.1007/978-1-4939-7598-3_12
  9. 9. Dite T.A., Langendorf C.G., Hoque A., Galic S., Rebello R.J., Ovens A.J., Lindqvist L.M., Ngoei K.R.W., Ling N.X.Y., Furic L., Kemp B.E., Scott J.W., Oakhill J.S. // J. Biol. Chem. 2018. Vol. 293. N 23. P. 8874. doi 10.1074/jbc.RA118.003547
  10. 10. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. // J. Clin. Invest. 2001. Vol. 108. N 8. P. 1167. doi 10.1172/JCI13505
  11. 11. Fraley M.E., Rubino R.S., Hoffman W.F., Hambaugh S.R., Arrington K.L., Hungate R.W., Bilodeau M.T., Tebben A.J., Rutledge R.Z., Kendall R.L., McFall R.C., Huckle W.R., Coll K.E., Thomas K.A. // Bioorg. Med. Chem. Lett. 2002. Vol. 12. N 24. P. 3537. doi 10.1016/s0960-894x(02)00827-2
  12. 12. Cuny G.D., Yu P.B., Laha J.K., Xing X., Liu J.F., Lai C.S., Deng D.Y., Sachidanandan C., Bloch K.D., Peterson R.T. // Bioorg. Med. Chem. Lett. 2008. Vol. 18. N 15. P. 4388. doi 10.1016/j.bmcl.2008.06.052
  13. 13. Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G.A., Thapliyal N., Palakollu V.N. // Eur. J. Med. Chem. 2017. Vol. 126. P. 298. doi 10.1016/j.ejmech.2016.11.019
  14. 14. Arias-Gómez A., Godoy A., Portilla J. // Molecules. 2021. Vol. 26. N 9. P. 2708. doi 10.3390/molecules26092708
  15. 15. Moszczyński-Pętkowski R., Majer J., Borkowska M., Bojarski Ł., Janowska S., Matłoka M., Stefaniak F., Smuga D., Bazydło K., Dubiel K., Wieczorek M. // Eur. J. Med. Chem. 2018. Vol. 155. P. 96. doi 10.1016/j.ejmech.2018.05.043
  16. 16. Prasanth C.P., Ebbin J., Abhijith A., Nair D.S., Ibnusaud I., Raskatov J., Singaram B. // J. Org. Chem. 2018. Vol. 83. N 3. P. 1431. doi 10.1021/acs.joc.7b02993
  17. 17. Rüger N., Roatsch M., Emmrich T., Franz H., Schüle R., Jung M., Link A. // ChemMedChem. 2015. Vol. 10. N 11. P. 1875. doi 10.1002/cmdc.201500335
  18. 18. Kaushik M.P., Vaidyanathaswamy R. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1995. Vol. 102. N 1-4. P. 45. doi 10.1080/10426509508042541
  19. 19. Borne R.F., Aboul-Enein H.Y. // J. Heterocycl. Chem. 1980. Vol. 17. N 7. P. 1609. doi 10.1002/jhet.5570170753
  20. 20. Demchuk O.P., Hryshchuk O.V., Vashchenko B.V., Radchenko D.S., Kovtunenko V.O., Komarov I.V., Grygorenko O.O. // Eur. J. Org. Chem. 2019. Vol. 2019. N 34. P. 5937. doi 10.1002/ejoc.201901001
  21. 21. Trofimenko S. // J. Org. Chem. 1963. Vol. 28. N 11. P. 3243. doi 10.1021/jo01046a526
  22. 22. Tomsho J.W., McGuireb J.J., Coward J.K. // Org. Biomol. Chem. 2005. Vol. 3. N 18. P. 3388. doi 10.1039/B505907K
  23. 23. Chen H.J., Chew C.Y., Chang E.H., Tu Y.W., Wei L.Y., Wu B.H., Chen C.H., Yang Y.T., Huang S.C., Chen J.K., Chen I.C., Tan K.T. // J. Am. Chem. Soc. 2018. Vol. 140. N 15. P. 5224. doi 10.1021/jacs.8b01159
  24. 24. Tribulovich V.G., Garabadzhiu A.V., Kalvin'sh I. // Pharm. Chem. J. 2011. Vol. 45. N 4. P. 241. doi 10.1007/s11094-011-0605-z
  25. 25. Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. // J. Am. Chem. Soc. 2005. Vol. 127. N 13. P. 4685. doi 10.1021/ja042491j
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library