- PII
- 10.31857/S0044460X23030150-1
- DOI
- 10.31857/S0044460X23030150
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 3
- Pages
- 475-482
- Abstract
- The manifestations of the Bi1- x Sb x Cr2(PO4)3 system with the α-CaMg2(SO4)3 structure were obtained and characterized by the evaporation of salt solutions with heat treatment. Refinement of the Rietveld method for the structure of BiCr2(PO4)3 ( x = 0) and SbCr2(PO4)3 ( x = 1) showed that the [Cr2(PO4)3]3∞ framework is formed by CrO6 octahedra doubled by faces, PO4 tetrahedra are between the dependences, attached to the octahedrons by oxygen vertices, the voids of the framework are populated by six-coordinated bismuth or antimony atoms. By varying the composition of the Bi1- x Sb x Cr2(PO4)3 solid solution everywhere, it is possible to obtain materials with low thermal expansion coefficients: 0.5×10-6 ≤ α av ≤ 1.9×10-6 °C-1.
- Keywords
- фосфаты висмут сурьма хром структура α-CaMg<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> тепловое расширение
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Pet'kov V.I., Asabina E.A., Sukhanov M.V., Schelokov I.A., Shipilov A.S., Alekseev A.A. // Chem. Eng. Trans. 2015. Vol. 43. P. 1825. doi 10.3303/CET1543305
- 2. Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. // Inorg. Chem. 2020. Vol. 59. P. 13245. doi 10.1021/acs.inorgchem.0c01597
- 3. Петьков В.И., Асабина Е.А., Лукутцов А.А., Корчемкин И.В., Алексеев А.А., Демарин В.Т. // Радиохимия. 2015. Т. 57. № 6. С. 540
- 4. Pet'kov V.I., Asabina E.A., Lukuttsov A.A., Korchemkin I.V., Alekseev A.A., Demarin V.T. // Radiochemistry. 2015. Vol. 57. N 6. P. 632. doi 10.1134/S1066362215060119
- 5. Abhilash P., Sebastian M.T., Surendran K.P. // J. Eur. Ceram. Soc. 2016. Vol. 36. № 8. P. 1939. doi 10.1016/j.jeurceramsoc.2016.02.019
- 6. Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. // Кристаллография. 2020. Т. 65. № 5. С. 745. doi 10.31857/S0023476120050173
- 7. Pet'kov V.I., Somov N.V., Lavrenov D.A., Sukhanov M.V., Fukina D.G. // Cryst. Rep. 2020. Vol. 65. N 5. P. 716. doi 10.1134/S106377452005017X
- 8. Chong M.K., Zainuddin Z., Omar F.S., Hj J.M.H. // Ceram. Int. 2022. Vol. 48. N 15. P. 22147. doi 10.1016/j.ceramint.2022.04.202
- 9. Moussadik A., Halim M., Arsalane S., Kacimi M., Hamidi A.E., Tielens F. // Mater. Res. Bull. 2022. Vol. 150. P. 111764. doi 10.1016/j.materresbull.2022.111764
- 10. Navarrete-Segado P., Grossin D., Frances C., Tourbin M., Tenailleau C., Duployer B. // Addit. Manuf. 2022. Vol. 50. P. 102542. doi 10.1016/j.addma.2021.102542
- 11. Liu F., Deng D., Wu M., Chen B., Zhou L., Xu S. // J. Alloys Compd. 2021. Vol. 865. P. 158820. doi 10.1016/j.jallcom.2021.158820
- 12. Shen L., Deng S., Jiang R., Liu G., Yang J., Yao X. // Energy Storage Mater. 2022. Vol. 46. P. 175. doi 10.1016/j.ensm.2022.01.010
- 13. Oda K., Saitoh H., Hoaki Y., Shimoda H., Hirao T., Ichiyoshi W., Shimizu Y. // Solid State Ion. 2020. Vol. 346. P. 115212. doi 10.1016/j.ssi.2019.115212
- 14. Zhang Y., Huazhi G., Shuang Y., Ao H. // J. Magn. Magn. Mater. 2020. Vol. 506. P. 166802. doi 10.1016/j.jmmm.2020.166802
- 15. Сафронова Т.В. // Неорг. матер. 2021. T. 57. № 5. С. 467. doi 10.31857/S0002337X21050067
- 16. Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N 5. P. 443. doi 10.1134/S002016852105006X
- 17. Wang J., Wei Y., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48. № 9. P. 12772. doi 10.1016/j.ceramint.2022.01.147
- 18. Ramya R., Buvaneswari G. // J. Nucl. Mater. 2022. Vol. 558. P. 153388. doi 10.1016/j.jnucmat.2021.153388
- 19. Bohre A., Avasthi K., Pet'kov V.I. // J. Ind. Eng. Chem. 2017. Vol. 50. P. 1. doi 10.1016/j.jiec.2017.01.032
- 20. Pilonen P.C., Friis H., Rowe R., Poirier G. // Canad. Mineral. 2020. Vol. 58. P. 1. doi 10.3749/canmin.2000044
- 21. Yaroslavtsev A.B., Stenina I.A. // Russ. J. Inorg. Chem. 2006. Vol. 51. Suppl. P. 97.
- 22. Masquelier C.W.C., Rodrıguez-Carvajal J., Gaubicher J., Nazar L. // Chem. Mater. 2000. Vol. 12. № 2. P. 525. doi 10.1021/cm991138n
- 23. Weil M. // Cryst. Res. Technol. 2007. Vol. 42. № 11. P. 1058. doi 10.1002/crat.200710975
- 24. Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. // Canad. Mineral. 2010. Vol. 48. № 6. P. 1469. doi 10.3749/canmin.48.5.1469
- 25. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПбГУ, 2011. Ч. 1.
- 26. Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi 10.1007/s10973-020-09370-y
- 27. Rietveld H.M. // Acta Crystallogr. 1967. Vol. 22. Pt 1. P. 151. doi 10.1107/S0365110X67000234
- 28. Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994. Vol. 102. P. 401. doi 10.2109/jcersj.102.401
- 29. Izumi F. // The Rietveld Method. New York: Oxford University Press, 1993. 298 p.