RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis, structure, and thermal expansion of BiCr2(PO4)3, SbCr2(PO4)3 and Bi1-xSbхCr2(PO4)3 solid solutions

PII
10.31857/S0044460X23030150-1
DOI
10.31857/S0044460X23030150
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 3
Pages
475-482
Abstract
The manifestations of the Bi1- x Sb x Cr2(PO4)3 system with the α-CaMg2(SO4)3 structure were obtained and characterized by the evaporation of salt solutions with heat treatment. Refinement of the Rietveld method for the structure of BiCr2(PO4)3 ( x = 0) and SbCr2(PO4)3 ( x = 1) showed that the [Cr2(PO4)3]3∞ framework is formed by CrO6 octahedra doubled by faces, PO4 tetrahedra are between the dependences, attached to the octahedrons by oxygen vertices, the voids of the framework are populated by six-coordinated bismuth or antimony atoms. By varying the composition of the Bi1- x Sb x Cr2(PO4)3 solid solution everywhere, it is possible to obtain materials with low thermal expansion coefficients: 0.5×10-6 ≤ α av ≤ 1.9×10-6 °C-1.
Keywords
фосфаты висмут сурьма хром структура α-CaMg<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> тепловое расширение
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Pet'kov V.I., Asabina E.A., Sukhanov M.V., Schelokov I.A., Shipilov A.S., Alekseev A.A. // Chem. Eng. Trans. 2015. Vol. 43. P. 1825. doi 10.3303/CET1543305
  2. 2. Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. // Inorg. Chem. 2020. Vol. 59. P. 13245. doi 10.1021/acs.inorgchem.0c01597
  3. 3. Петьков В.И., Асабина Е.А., Лукутцов А.А., Корчемкин И.В., Алексеев А.А., Демарин В.Т. // Радиохимия. 2015. Т. 57. № 6. С. 540
  4. 4. Pet'kov V.I., Asabina E.A., Lukuttsov A.A., Korchemkin I.V., Alekseev A.A., Demarin V.T. // Radiochemistry. 2015. Vol. 57. N 6. P. 632. doi 10.1134/S1066362215060119
  5. 5. Abhilash P., Sebastian M.T., Surendran K.P. // J. Eur. Ceram. Soc. 2016. Vol. 36. № 8. P. 1939. doi 10.1016/j.jeurceramsoc.2016.02.019
  6. 6. Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. // Кристаллография. 2020. Т. 65. № 5. С. 745. doi 10.31857/S0023476120050173
  7. 7. Pet'kov V.I., Somov N.V., Lavrenov D.A., Sukhanov M.V., Fukina D.G. // Cryst. Rep. 2020. Vol. 65. N 5. P. 716. doi 10.1134/S106377452005017X
  8. 8. Chong M.K., Zainuddin Z., Omar F.S., Hj J.M.H. // Ceram. Int. 2022. Vol. 48. N 15. P. 22147. doi 10.1016/j.ceramint.2022.04.202
  9. 9. Moussadik A., Halim M., Arsalane S., Kacimi M., Hamidi A.E., Tielens F. // Mater. Res. Bull. 2022. Vol. 150. P. 111764. doi 10.1016/j.materresbull.2022.111764
  10. 10. Navarrete-Segado P., Grossin D., Frances C., Tourbin M., Tenailleau C., Duployer B. // Addit. Manuf. 2022. Vol. 50. P. 102542. doi 10.1016/j.addma.2021.102542
  11. 11. Liu F., Deng D., Wu M., Chen B., Zhou L., Xu S. // J. Alloys Compd. 2021. Vol. 865. P. 158820. doi 10.1016/j.jallcom.2021.158820
  12. 12. Shen L., Deng S., Jiang R., Liu G., Yang J., Yao X. // Energy Storage Mater. 2022. Vol. 46. P. 175. doi 10.1016/j.ensm.2022.01.010
  13. 13. Oda K., Saitoh H., Hoaki Y., Shimoda H., Hirao T., Ichiyoshi W., Shimizu Y. // Solid State Ion. 2020. Vol. 346. P. 115212. doi 10.1016/j.ssi.2019.115212
  14. 14. Zhang Y., Huazhi G., Shuang Y., Ao H. // J. Magn. Magn. Mater. 2020. Vol. 506. P. 166802. doi 10.1016/j.jmmm.2020.166802
  15. 15. Сафронова Т.В. // Неорг. матер. 2021. T. 57. № 5. С. 467. doi 10.31857/S0002337X21050067
  16. 16. Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N 5. P. 443. doi 10.1134/S002016852105006X
  17. 17. Wang J., Wei Y., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48. № 9. P. 12772. doi 10.1016/j.ceramint.2022.01.147
  18. 18. Ramya R., Buvaneswari G. // J. Nucl. Mater. 2022. Vol. 558. P. 153388. doi 10.1016/j.jnucmat.2021.153388
  19. 19. Bohre A., Avasthi K., Pet'kov V.I. // J. Ind. Eng. Chem. 2017. Vol. 50. P. 1. doi 10.1016/j.jiec.2017.01.032
  20. 20. Pilonen P.C., Friis H., Rowe R., Poirier G. // Canad. Mineral. 2020. Vol. 58. P. 1. doi 10.3749/canmin.2000044
  21. 21. Yaroslavtsev A.B., Stenina I.A. // Russ. J. Inorg. Chem. 2006. Vol. 51. Suppl. P. 97.
  22. 22. Masquelier C.W.C., Rodrıguez-Carvajal J., Gaubicher J., Nazar L. // Chem. Mater. 2000. Vol. 12. № 2. P. 525. doi 10.1021/cm991138n
  23. 23. Weil M. // Cryst. Res. Technol. 2007. Vol. 42. № 11. P. 1058. doi 10.1002/crat.200710975
  24. 24. Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. // Canad. Mineral. 2010. Vol. 48. № 6. P. 1469. doi 10.3749/canmin.48.5.1469
  25. 25. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПбГУ, 2011. Ч. 1.
  26. 26. Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi 10.1007/s10973-020-09370-y
  27. 27. Rietveld H.M. // Acta Crystallogr. 1967. Vol. 22. Pt 1. P. 151. doi 10.1107/S0365110X67000234
  28. 28. Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994. Vol. 102. P. 401. doi 10.2109/jcersj.102.401
  29. 29. Izumi F. // The Rietveld Method. New York: Oxford University Press, 1993. 298 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library