RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Mechanism of chlorotriflamidation of vinylsilanes with N,N-dichlorotriflamide

PII
10.31857/S0044460X23030101-1
DOI
10.31857/S0044460X23030101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 3
Pages
425-431
Abstract
The mechanism of the reaction of vinylsilanes with N , N -dichlorotriflamide and the effect of a substituent at the silicon atom on the reaction course and on the charge distribution in substrates and their carbon analogues were studied by DFT method. The C=C bond in vinylsilanes and alkenes is polarized in the opposite way. The reaction proceeds in two stages: chlorination of the substrate with the formation of a chloronium ion, and its opening at the Cβ-Cl bond by the N -chlorotriflamide anion. Transition states of two stages were calculated. The reaction products are hydrolyzed to NH-derivatives; their IR spectra and supramolecular structure, including cyclic and linear dimers, calculated in the gas phase and in a polar medium, were studied.
Keywords
винилсиланы хлортрифламидирование механизм реакции квантово-химические расчеты ИК спектроскопия
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Мирскова А.Н., Дроздова Т.И., Левковская Г.Г., Воронков М.Г. // Усп. хим. 1989. Т. 58. С. 417
  2. 2. Mirskova A.N., Drozdova T.I., Levkovskaya G.G., Voronkov M.G. // Russ. Chem. Rev. 1989. Vol. 58. P. 250. doi 10.1070/RC1989v058n03ABEH003438
  3. 3. Левковская Г.Г., Дроздова Т.И., Розенцвейг И.Б., Мирскова А.Н. // Усп. хим. 1999. Т. 68. С. 638
  4. 4. Levkovskaya, G.G., Drozdova, T.I., Rozentsveig, I.B., Mirskova, A.N. Russ. Chem. Rev. 1999. Vol. 68. P. 581. doi 10.1070/RC1999v068n07ABEH000476
  5. 5. Шаинян Б.А. // Усп. хим. 2022. Т. 91. RCR5052
  6. 6. Shainyan B.A. // Russ. Chem. Rev. 2022. Vol. 91. RCR5052. doi 10.1070/RCR5052
  7. 7. Ushakova I.V., Shainyan B.A. // Mendeleev Commun. 2020. Vol. 30. Р. 117. doi 10.1016/j.mencom.2020.01.039
  8. 8. Ushakova I.V., Shainyan B.A. // Mendeleev Commun. 2020. Vol. 30. Р. 794. doi 10.1016/j.mencom.2020.01.039
  9. 9. Idem. ibid. 794.
  10. 10. Ушакова И.В., Шаинян Б.А. // ЖОрХ. 2022. Т. 58. С. 387. doi 10.31857/S0514749222040036
  11. 11. Ushakova I.V., Shainyan B.A. // Russ. J. Org. Chem. 2022. Vol. 58. P. 484. doi 10.1134/S1070428022040030
  12. 12. Weinhold F., Landis C.R. Valency and Bonding: A Natural Bond Orbital Donoracceptor Perspective. Cambridge: University Press, 2005.
  13. 13. Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. NBO Version 3.1. Gaussian. Inc. Pittsburgh. PA. CT 2003.
  14. 14. Breneman C.M., Wiberg K.B. // J. Comput. Chem. 1990. Vol. 11. P. 361. doi 10.1002/jcc.540110311. S2CID 96760978
  15. 15. Jensen F. Introduction to Computational Chemistry. Chichester: Wiley, 2006.
  16. 16. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: Wiley, 2004.
  17. 17. Shainyan B.A., Kirpichenko S.V., Freeman F. // J. Am. Chem. Soc. 2004. Vol. 126. P. 11456. doi 10.1021/ja047083u
  18. 18. Alkorta I., Rozas I., Mó O., Yáñez M., Elguero J. // J. Phys. Chem. (A). 2001. Vol. 105. P. 7481. doi 10.1021/jp0116407
  19. 19. Smith B.J., Radom L. // Chem. Phys. Lett. 1995. Vol. 245. P. 123. doi 0009-2614(95)00988-4
  20. 20. Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Ganin A.S., Shainyan B.A. // J. Mol Struct. 2020. Vol. 1219. P. 128534. doi 10.1016/j.molstruc.2020.128534
  21. 21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
  22. 22. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
  23. 23. Lee C., Yang W., Parr R.G. Phys. Rev. (B). 1988. Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
  24. 24. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. Vol. 72. P. 650. doi 10.1063/1.438955
  25. 25. Peng C., Ayala P.Y., Schlegal H.B., Frisch M.J. // J. Comput. Chem. 1996 Vol. 17. P. 49. doi 10.1002/(SICI)1096-987X(19960115)17:13.0.CO;2-0
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library