RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Electronic State of Arsenic endo-atom and indices of interatomic bonds in[As@Ni12As20]3-/0, As20, Ni12As20, As@C60, and As@C70 Clusters

PII
10.31857/S0044460X23020191-1
DOI
10.31857/S0044460X23020191
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
322-328
Abstract
The DFT PBE0/SDD method was used to calculate bond lengths and bond indices in As20, Ni12As20, [As@Ni12As20]3-, As@C60 and As@C70 clusters. The degrees of oxidation and reduction of the endo -atom and the shell are expressed in terms of the populations of one-electron states localized in these components of the complexes. Each As atom in clusters has a entirely localized lone electron pair. The arsenic atom inside fullerenes retains the electronic configuration and spin of the ground state of the free As atom. Inside the [Ni12As20]6- shell, it has an oxidation state of 3+. There is no covalent bond between the endo -atom and the shell in clusters. The bond indices refute the opinion about the “onion” structure of [As@Ni12@As20]3-: the nickel atoms are not bonded to each other, the As-As bond indices are three times lower than in As20.
Keywords
кластер эндоэдральный комплекс структура атомный радиус степень окисления/ восстановления индексы связей
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Moses M.J., Fettinger J.C., Eichhorn B.W. // Science. 2003. Vol. 300. N 5620. P. 778. doi 10.1126/science.1082342
  2. 2. Liu H.-T., Li J.-M. // Chin. Phys. 2005. Vol. 14. N 10. P. 1974. doi 10.1088/1009-1963/14/10/010
  3. 3. Baruah T., Zope R.R., Richardson S.L., Pederson M.R. // Phys. Rev. (B). 2003. Vol. 68. N 24. P. 241404. doi 10.1103/PhysRevB.68.241404
  4. 4. MacLeod Carey D., Morales-Verdejo C., Munoz-Castro A. // Chem. Phys. Lett. 2015. Vol. 638. P. 99. doi 10.1016/j.cplett.2015.08.039
  5. 5. King R.B., Zhao J. // Chem. Commun. 2006. N 40. P. 4204. doi 10.1039/B607895H
  6. 6. McWeeny R. // J. Chem. Phys. 1951. Vol. 19. N 12. P. 1614. doi 10.1063/1.1748146
  7. 7. Mulliken R.S. // J. Chem. Phys. 1955. Vol. 23. N 10. P. 1833. doi 10.1063/1.1740588
  8. 8. Giambiagi M., Giambiagi M., Grempel D.R., Heymann C.D. // J. Chim. Phys. 1975. Vol. 72. N 1. P. 15. doi 10.1051/jcp/1975720015
  9. 9. Giambiagi M. de, Giambiagi M., Jorge F.E. // Z. Naturforsch. 1984. Vol. 39a. N 12. P. 1259.
  10. 10. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. Vol. 77. N 18. P. 3865. doi 10.1103/PhysRevLett.77.3865
  11. 11. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Rev. C.01. Wallingford CT, Gaussian, Inc., 2013.
  12. 12. Семенов С.Г., Бедрина М.Е., Клемешев В.А., Макарова М.В. // Оптика и спектр. 2014. Т. 117. № 4. С. 534. doi 10.7868/S0030403414100195
  13. 13. Semenov S.G., Bedrina M.E., Klemeshev V.A., Makarova M.V. // Opt. Spectrosc. 2014. Vol. 117. N 4. P. 173. doi 10.1134/S0030400X14100191
  14. 14. Семенов С.Г., Бедрина М.Е., Клемешев В.А., Титов А.В. // ЖОХ 2021. Т. 91. Вып. 2. С. 290. doi 10.31857/S0044460X2102013X
  15. 15. Semenov S.G., Bedrina M.E., Klemeshev V.A., Titov A.V. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 241. doi 10.1134/S1070363221020134
  16. 16. BelBruno J.J. // Fullerenes, Nanotubes and Carbon Nanostruct. 2002. Vol. 10. N 1. P. 23. doi 10.1081/FST-120002927
  17. 17. Tsetseris L. // J. Phys. Chem. (C). 2011. Vol. 115. P. 3528. doi 10.1021/jp108277v
  18. 18. Hashikawa Y., Murata M., Wakamiya A., Murata Y. // J. Am. Chem. Soc. 2016. Vol. 138. N 12. P. 4096. doi 10.1021/jacs.5b12795
  19. 19. Вилков Л.В., Мастрюков В.С., Садова Н.И. Определение геометрического строения свободных молекул. Л.: Химия, 1978. С. 210.
  20. 20. Бараш Ю.С. Силы Ван-дер-Ваальса. М.: Наука. Гл. ред. физ.-мат. лит., 1988. С. 12.
  21. 21. Уэллс А. Структурная неорганическая химия. М.: Мир, 1987. Т. 2. С. 501.
  22. 22. Born M. // Z. Phys. 1920. Bd 1. S. 45. doi 10.1007/BF01881023
  23. 23. Tomasi J., Persico M. // Chem. Rev. 1994. Vol. 94. N 7. P. 2027. doi 10.1021/cr00031a013
  24. 24. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. Vol. 105. N 8. P. 2999. doi 10.1021/cr9904009
  25. 25. Семенов С.Г., Макарова М.В. // ЖОХ. 2015. Т. 85. Вып. 4. С. 648
  26. 26. Semenov S.G., Makarova M.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 4. P. 889. doi 10.1134/S1070363215040210
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library