RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Effect of Co-Doping on the Electrical Properties of Magnesium and Copper-Containing Bismuth Niobate with Pyrochlor-Type Structure

PII
10.31857/S0044460X23020178-1
DOI
10.31857/S0044460X23020178
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
308-313
Abstract
Ruthenium-codoped bismuth niobate Bi1.5Cu0.375Mg0.375Nb1.45Ru0.05O7-δ with the pyrochlore structure was obtained by Pechini method. The distribution of Ru4+ over Nb5+ sites was established by structural analysis. According to the data of optical reflectance spectra, the optical band gap decreases from 2.40 to 2.27 eV for the sample doped with ruthenium. A small amount of ruthenium in the system was found to result in an increase in conductivity by 0.5 orders of magnitude compared to Cu-Mg-substituted bismuth niobate, due to an increase in the electronic component of the conductivity.
Keywords
замещенный ниобат висмута содопирование пирохлор проводимость
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol. 15. P. 55. doi 10.1016/0079-6786(83)90001-8
  2. 2. Williford R.E., Weber W.J., Devanathan R., Gale J.D. // J. Electroceramics. 1999.Vol. 3. P. 409. doi 10.1023/A:1009978200528
  3. 3. D�az-Guill�n J.A., D�az-Guill�n M.R., Padmasree K.P., Fuentes A.F., Santamar�a J., Le�n C. // Solid State Ionics. 2008. Vol. 179. P. 2160. doi 10.1016/j.ssi.2008.07.015
  4. 4. Anantharaman A.P., Prasad H. // Ceram. Int.2020. Vol. 47. P. 4367. doi 10.1016/j.ceramint.2020.10.012
  5. 5. Gill J.K., Pandey O.P., Singh K. 2012. Vol. 37. P. 3857. doi 10.1016/j.ijhydene.2011.04.216
  6. 6. Da Silva S.A., Zanetti S.M. // Ceram. Int. 2009. Vol. 35. P. 2755. doi 10.1016/j.ceramint.2009.03.022
  7. 7. Dasin N.A.M., Tan K.B., Khaw C.C., Zainal Z., Lee O.J., Chen S.K. // Mater. Chem. Phys. 2020. Vol. 242. P. 122558. doi 10.1016/j.matchemphys.2019.122558
  8. 8. Dasin N.A.M., Tan K.B., Zainal Z., Khaw C.C., Chen S.K. // J. Electroceramics. 2019. Vol. 43. P. 41. doi 10.1007/s10832-019-00188-1
  9. 9. Ehora G., Daviero-Minaud S., Steil C., Gengembre L., Fr�re M., Bellayer S., Mentre O. // Chem. Mater. 2008. Vol. 20. P. 7425. doi 10.1021/cm801942c
  10. 10. Haas M.K., Cava R.J., Avdeev M., Jorgensen J.D. // Phys. Rev. (B). 2002. Vol. 66. P. 1. doi 10.1103/PhysRevB.66.094429
  11. 11. Koroleva M.S., Krasnov A.G., Senyshyn A., Sch�kel A., Shein I.R., Vlasov M.I., Piir I.V. // J. Alloys Compd. 2021. Vol. 858. P. 157742. doi 10.1016/j.jallcom.2020.157742
  12. 12. Koroleva M.S., Krasnov A.G., Osinkin D.A., Kellerman D.G., Stoporev A.S., Piir I.V. // Ceram. Int. 2022. doi 10.1016/j.ceramint.2022.10.290
  13. 13. Shiratori Y., Tietz F., Buchkremer H.P., St�ver D. // Solid State Ionics. 2003. Vol. 164. P. 27. doi 10.1016/j.ssi.2003.08.019
  14. 14. Hector A.L., Wiggin S.B. // J. Solid State Chem. 2004. Vol. 177. P. 139. doi 10.1016/S0022-4596(03)00378-5
  15. 15. Shannon R.D. // Acta Crystallogr. (A). 1976. Vol. 32. P. 751. doi 10.1107/S0567739476001551
  16. 16. Sadykov V.A., Koroleva M.S., Piir I.V., Chezhina N.V., Korolev D.A., Skriabin P.I., Krasnov A.V., Sadovskaya E.M., Eremeev N.F., Nekipelov S.V., Sivkov V.N. // Solid State Ionics. 2018. Vol. 315. P. 33. doi 10.1016/j.ssi.2017.12.008
  17. 17. Krasnov A.G., Kabanov A.A., Kabanova N.A., Piir I.V., Shein I.R. // Solid State Ionics. 2019. Vol. 335. P. 135. doi 10.1016/j.ssi.2019.02.023
  18. 18. Pirzada M., Grimes R.W., Minervini L., Maguire J.F., Sickafus K.E. // Solid State Ionics. 2001. Vol. 140. P. 201. doi 10.1016/S0167-2738(00)00836-5
  19. 19. Wilde P.J., Catlow C.R.A. // Solid State Ionics. 1998. Vol. 112. P. 173. doi 10.1016/s0167-2738(98)00190-8
  20. 20. Rodr�guez-Carvajal J. // Phys. Rev. (B). 1993. Vol. 192. P. 55. doi 10.1016/0921-4526(93)90108-I
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library