RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis of TiO2/Gd2O3 and TiO2/Gd2O3/Ag Nanomaterials. Application in Photocatalytic Degradation Reactions

PII
10.31857/S0044460X23020154-1
DOI
10.31857/S0044460X23020154
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
293-300
Abstract
A technique for the template synthesis of nanocrystalline titanium(IV) oxide and its modification with nanoparticles of gadolinium(III) oxide and silver has been developed. The composition and structure of the obtained materials were characterized by X-ray phase analysis and IR spectroscopy. The specific surface area and pore size distribution were determined. The photocatalytic properties of the synthesized TiO2/Gd2O3 and TiO2/Gd2O3/Ag nanomaterials were evaluated in the reaction of degradation of aqueous solutions of methyl orange upon irradiation with UV light. It was found that the introduction of gadolinium (III) oxide increases the photocatalytic activity, and the introduction of silver particles makes the photocatalyst sensitive to light with a shorter wavelength.
Keywords
катализ темплатный синтез фотокатализ оксид титана(IV) оксид гадолиния(III)
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Jeon S., Ko J.W., Ko W.B. // Catalysts. 2021. Vol. 11. N 6. С. 742. doi 10.3390/catal11060742
  2. 2. Park I.Y., Kim D., Lee J., Lee S. H., Kim K.J. // Mater. Chem. Phys. 2007. Vol. 106. N 1. P. 149. doi 10.1016/j.matchemphys.2007.05.050
  3. 3. Anishur Rahman A.T.M., Majewski P., Vasilev K. // Contrast Media Mol. Imaging. 2013. Vol. 8. N 1. Р. 92. doi 10.1002/cmmi.1481
  4. 4. Sakai N., Zhu L., Kurokawa A., Takeuchi H., Yano S., Yanoh T., Wada N., Taira S., Hosokai S., Usui A., Machida Y., Saito H., Ichiyanagi Y. // J. Phys. Conf. Ser. 2012. Vol. 352. N 1. P. 012008. doi 10.1088/1742-6596/352/1/012008
  5. 5. Peng J., Hojamberdiev M., Xu Y., Cao B., Wang J., Wu H. // J. Magn. Magn. Mater. 2011. Vol. 323. N 1. P. 133. doi 10.1016/j.jmmm.2010.08.048
  6. 6. Ballem M.A., Söderlind F., Nordblad P., Käll P.O., Odén M. // Micropor. Mesopor. Mater. 2013. Vol. 168. P. 221. doi 10.1016/j.micromeso.2012.10.009
  7. 7. Баковец В.В., Трушникова Л.Н., Плюснин П.Е., Корольков И.В., Долговесова И.П., Пивоварова Т.Д., Савинцева С.А. // ЖОХ. 2013. Т. 83. № 10. С. 1596. doi 10.1134/S0132665119030065
  8. 8. Bakovets V.V., Trushnikova L.N., Plyusnin P.E., Korolkov I.V., Dolgovesova I.P., Pivovarova T.D., Savintseva S.A. // Russ. J. Gen. Chem. 2013. Vol. 83. N 10. P. 1808. doi 10.1134/S1070363213100034
  9. 9. Iwako Y., Akimoto Y., Omiya M., Ueda T., Yokomori T. // J. Lumin. 2010. Vol. 130. N 8. P. 1470. doi 10.1016/j.jlumin.2010.03.014
  10. 10. Muller A., Heim O., Panneerselvam M., WillertPorada M. // Mater. Res. Bull. 2005 Vol. 40. N 12. P. 2153. doi 10.1016/j.materresbull.2005.07.006
  11. 11. Ahrén M., Selegard L., Klasson A., Soderlind F., Abrikossova N., Skoglund C., Bengtsson T., Engstrom M., Kall P., Uvdal K. // Langmuir. 2010. Vol. 26. N 8. P. 5753. doi 10.1021/la903566y
  12. 12. Dědková K., Kuzníkova L., Pavelek L., Matejova K., Kupkova J., Cech Barabaszova K., Vana R., Burda J., Vlcek J., Cvejn D., Kukutschova J. // Mater. Chem. Phys. 2017. Vol. 197. P. 226. doi 10.1016/j.matchemphys.2017.05.039
  13. 13. Zhou X., Hu Ch., Liu Xi., Chen W., Tang Qu., Li Y. // J. Rare Earths. 2020. Vol. 38. N 1. P. 108. doi 10.1016/j.jre.2019.01.011
  14. 14. Singh G., McDonagh B.H., Hak S., Peddis D., Bandopadhyay S., Sandvig I., Sandvig A., Glomm W. // J. Mater. Chem. (B). 2017. Vol. 5. N 3. P. 418. doi 10.1039/C6TB02854C
  15. 15. Cho M., Sethi R., Ananta narayanan J.S., Lee S.S., Benoit D., Taheri N., Decuzzi P., Colvin V. // Nanoscale. 2014. Vol. 6. N 22. P. 13637. doi 10.1039/C4NR03505D
  16. 16. Fu G., He A., Jin Y., Cheng Q., Song J. // Bioresources. 2012. Vol. 7. N 2. P. 2319. doi 10.15376/biores.7.2.2319-2329
  17. 17. Вахрушев А.Ю., Бойцова Т.Б., Горбунова В.В., Стожаров В.М. // Неорг. матер. 2017. Т. 53. № 2. С. 156. doi 10.7868/S0002337X17020154
  18. 18. Vakhrushev A.Y., Boitsova T.B., Gorbunova V.V., Stozharov V.M. // Inorg. Mater. 2017. Vol. 53. N 2. P. 171. doi 10.1134/S0020168517020157
  19. 19. Jiang X., Yu L., Yao Ch., Zhang F., Zhang J., Li Ch. // Materials. 2016. Vol. 9. N 5. P. 323. doi 10.3390/ma9050323
  20. 20. Wu D., Li Ch., Zhang D., Wang L., Zhang Xi., Shi Z., Lin Q. // J. Rare Earths. 2019. Vol. 37. N 8. P. 845. doi 10.1016/j.jre.2018.10.011
  21. 21. Mkhalid I.A., Fierro J.L.G., Mohamed R.M., Alshahri A.A. // Appl. Nanosci. 2020. Vol. 10. N 10. P. 3773. doi 10.1007/s13204-020-01479-8
  22. 22. Вахрушев А.Ю., Крайнов Д.С., Бойцова Т.Б., Горбунова В.В., Пак В.Н. // ЖПХ. 2020. Т. 93. № 2. С. 282. doi 10.31857/S0044461820020176
  23. 23. Vakhrushev A.Y., Krainov D.S., Boitsova T.B., Gorbunova V.V., Pak V.N. // Russ. J. Appl. Chem. 2020. Vol. 93. N 2. P. 274. doi 10.1134/S1070427220020172
  24. 24. Moran P.D., Bowmaker G.A., Cooney R.P., Finnie K.S., Bartlett J.R., Woolfrey J.L. // Inorg. Chem. 1998. Vol. 37. N 11. P. 2741. doi 10.1021/ic9709436
  25. 25. Jiang Xu., Yu L., Yao Ch., Zhang F., Zhang J., Li Ch. // Materials. 2016. Vol. 9. N 5. P. 323. doi 10.3390/ma9050323
  26. 26. Ananth A., Mok Y. // Nanomaterials. 2016. Vol. 6. N 3. P. 42. doi 10.3390/nano6030042
  27. 27. Waterhouse G.I.N., Bowmaker G.A., Metson J.B. // Phys. Chem. Chem. Phys. 2001. Vol. 3. N 17. P. 3838. doi 10.1039/b103226g
  28. 28. Langford J.I., Wilson A.J.C. // J. Appl. Cryst. 1978. Vol. 11. N 2. P. 102. doi 10.1107/S0021889878012844
  29. 29. Zalas M. // J. Rare Earths. 2014. Vol. 32. N 6. P. 487. doi 10.1016/S1002-0721(14)60097-1
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library