RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Photo- And Ionochromic Diarylethenes with Receptor Fragments in The Thiazole Bridge

PII
10.31857/S0044460X23020075-1
DOI
10.31857/S0044460X23020075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
217-225
Abstract
Diarylethenes containing coumarin and thiophene substituents in the thiazole bridge and quinoline receptor fragments were synthesized. 2-Chloroquinoline diarylethenes form colored cyclic hexadiene forms under UV light, which undergo reverse isomerization when exposed to visible light. 2-Hydroxyquinoline diarylethenes are nonphotochromic. The ionochromic effects of interaction with fluoride anions and copper(II) and nickel(II) cations were studied.
Keywords
диарилэтены фотохромизм ионохромный эффект (naked-eye эффект) флуоресценция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Komarov I.V., Afonin S., Babii O., Schober T., Ulrich A.S. In: Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Z. Pianowski. Weinheim: Wiley, 2022. P. 152.
  2. 2. Irie M., Fukaminato T., Matsuda K. // Chem. Rev. 2014. Vol. 114. P. 12174. doi 10.1021/cr500249p
  3. 3. Lvov A.G. / J. Org. Chem. 2020. Vol. 85. P. 8749. doi 10.1021/acs.joc.0c00924
  4. 4. Irie M. // Chem. Rev. 2000. Vol. 100. P. 1685. doi 10.1021/cr980069d
  5. 5. Zhang J., Tian H. // Adv. Opt. Mater. 2018. Article 1701278. doi 10.1002/adom.201701278
  6. 6. Cheng H.B., Zhang S., Bai E., Cao X., Wang J., Qi J., Liu J., Zhao J., Zhang L., Yoon J. Adv. Mater. 2022. Vol. 34. Article 2108289. doi 10.1002/adma.202108289
  7. 7. Guo S., Fan C., Liu G., Pu S. // RSC Adv. 2018. Vol. 8. P. 39854. doi 10.1039/C8RA08358D
  8. 8. Gundogdu L., Kose M., Takeuchi S., Yokoyama Y., Orhan E. J. Lumin. 2018. Vol. 203. P. 568. doi 10.1016/j.jlumin.2018.06.014
  9. 9. Lv J., Fu Y., Liu G., Fan C., Pu S. // RSC Adv. 2019. Vol. 9. P. 10395. doi 10.1039/c9ra00716d
  10. 10. Jiang G., Shi F., Jia Y., Cui S., Pu S. // J. Fluoresc. 2020. Vol. 30. P.1567. doi 10.1007/s10895-020-02609-9
  11. 11. Li X., Li X., Zhao H., Kang H., Fan C., Liu G., Pu S. // J. Fluoresc. 2021. Vol. 31. P. 1513. doi 10.1007/s10895-021-02775-4
  12. 12. Mahesh K., Padmavathi D.A. // J. Fluoresc. 2020. Vol. 30. P. 35. doi 10.1007/s10895-019-02444-7
  13. 13. Indelli M.T., Carli S., Ghirotti M., Chiorboli C., Ravaglia M., Garavelli M., Scandola F. // J. Am. Chem. Soc. 2008. Vol. 130. P. 7286. doi 10.1021/ja711173z
  14. 14. Zhang X.C., Huo Z.M., Wang T.T., Zeng H.P. // J. Phys. Org. Chem. 2012. Vol. 25. P. 754. doi 10.1002/poc.2914
  15. 15. Shepelenko E.N., Podshibyakin V.A., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // J. Mol. Struct. 2018. Vol. 1163. P. 221. doi 10.1016/j.molstruc.2018.03.005
  16. 16. Chemosensors: Principles, Strategies, and Applications / Eds E.V. Anslyn, B. Wang. Hoboken: Wiley, 2011.
  17. 17. Sun W., Li M., Fan J., Peng X. // Acc. Chem. Res. 2019. Vol. 52. P. 2818. doi 10.1021/acs.accounts.9b00340
  18. 18. Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
  19. 19. Daly B., Ling J., de Silva P. // Chem. Soc. Rev. 2015. Vol. 44. P. 4203. doi 10.1039/C4CS00334A
  20. 20. Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
  21. 21. Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S. // Chem. Rev. 2015. Vol. 115. P. 7893. doi 10.1021/cr500553d
  22. 22. Kaur N., Kumar S. // Tetrahedron. 2011. Vol. 67. P. 9233. doi 10.1016/j.tet.2011.09.003
  23. 23. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi 10.1039/C7CS00240H
  24. 24. Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
  25. 25. Shi Z., Tu Y., Wang R., Liu G., Pu S. // Dyes Pigm. 2018. Vol. 149. P. 764. doi: 10.1016/j.dyepig.2017.11.051
  26. 26. Traven V.F., Bochkov A.Y., Krayushkin M.M., Yarovenko V.N., Nabatov B.V., Dolotov S.M., Barachevsky V.A., Beletskaya I.P. // Org. Lett. 2008. Vol. 10. P. 1319. doi 10.1021/ol800223g
  27. 27. Joshi H.C., Antonov L. // Molecules. 2021. Vol. 26. Article 1475. doi 10.3390/molecules26051475
  28. 28. Li Y., Bai X., Liang R., Zhang X., Nguyen Y.H., Van Veller B., Du L., Phillips D.L. // J. Phys. Chem. (B). 2021. Vol. 125. P. 12981. doi 10.1021/acs.jpcb.1c05798
  29. 29. Ohsumi M., Fukaminato T., Irie M. // Chem. Commun. 2005. P. 3921. doi 10.1039/B506801K
  30. 30. Nourmohammadian F., Wu T.Q., Branda N.R. // Chem. Commun. 2011. Vol. 47. P. 10954. doi 10.1039/C1CC13685B
  31. 31. Shepelenko E.N., Revinskii Yu.V., Tikhomirova K.S., Karamov O.G., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 193. doi 10.1016/j.mencom.2016.04.004
  32. 32. Santos-Figueroa L.E., Moragues M.E, Climent E., Agostini A., Martınez-Manez R., Sancenon F. // Chem. Soc. Rev. 2013. Vol. 42. P. 3489. doi 10.1039/C3CS35429F
  33. 33. Saini R., Kaur N., Kumar S. // Tetrahedron. 2014. Vol. 70. P. 4285. doi 10.1016/j.tet.2014.04.058
  34. 34. Kaur N., Kaur G., Fegade U.A., Singh A., Sahoo S.K., Kuwar A.S., Singh N. // Trends Analyt. Chem. 2017. Vol. 95. P. 86. doi 10.1016/j.trac.2017.08.003
  35. 35. Dubonosov A.D., Bren V.A., Minkin V.I. In: Tautomerism: Concepts and Applications in Science and Technology / Ed. L. Antonov. Weinheim: Wiley-VCH. 2016. P. 229.
  36. 36. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library