- PII
- 10.31857/S0044460X23010183-1
- DOI
- 10.31857/S0044460X23010183
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 1
- Pages
- 153-164
- Abstract
- Metal-carbon nanocomposites consisting of Fe-Co bimetallic nanoparticles uniformly dispersed in the carbon matrix were synthesized by pyrolysis of a precursor based on chitosan and metal salts in the temperature range 500-800°C. The change in the structural characteristics of the samples after activation in the presence of potassium hydroxide was studied. It was found that alkaline activation leads to an increase in the specific surface area of the nanocomposites up to 700 m2/g and in the size of metal nanoparticles, whereas the phase composition and morphology of the carbon support remain unchanged.
- Keywords
- металл-углеродный нанокомпозит наночастицы FeCo хитозан ИК нагрев
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Mourdikoudis S., Pallares R.M., Thanh N.T.K. // Nanoscale. 2018. Vol. 10. P. 12871. doi 10.1039/c8nr02278j
- 2. Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Shilina M.I. // Catal. Today. 2021. Vol. 379. P. 50. doi 10.1016/j.cattod.2020.06.061
- 3. Валецкий П.М., Сульман М.Г., Бронштейн Л.М., Сульман Э.М., Сидоров А.И., Матвеева В.Г. // Рос. нанотехнол. 2009. Т. 4. № 9-10. С. 94
- 4. Valetsky P.M., Sulman M.G., Bronstein L.M., Sulman E.M., Sidorov A.I., Matveeva V.G. // Nanotechnologies in Russia. 2009. Vol. 4. P. 9. doi 10.1134/S1995078009090092
- 5. Zaleska-Medynska A., Marchelek M., Diak M., Grabowska E. // Adv. Colloid Interface Sci. 2016. Vol. 229. P. 80. doi 10.1016/j.cis.2015.12.008
- 6. Wang Y.-J., Fang B., Li H., Bi X.T., Wang H. // Prog. Mater. Sci. 2016. Vol. 82. P. 445. doi 10.1016/j.pmatsci.2016.06.002
- 7. Peng G., Gramm F., Ludwig C., Vogel F. // Catal. Sci. Technol. 2015. Vol. 5. P. 3658. doi 10.1039/C5CY00352K
- 8. Medina-Cruz D., Saleh B., Vernet-Crua A., Nieto-Argüello A., Lomelí-Marroquín D., Vélez-Escamilla L.Y., Cholula-Díaz J.L., García-Martín J.M., Webster T. In: Racing for the Surface: Antimicrobial and Interface Tissue Engineering. Switzerland: Springer Nature, 2020. P. 397. doi 10.1007/978-3-030-34471-9_16
- 9. Ragothaman M., Mekonnen B.T., Palanisamy T. // Mater. Chem. Phys. 2020. Vol. 253. P. 123405. doi 10.1016/j.matchemphys.2020.123405
- 10. Afghahi S.S.S., Shokuhfar A. // J. Magn. Magn. Mater. 2014. Vol. 370. P. 37. doi 10.1016/j.jmmm.2014.06.040
- 11. He Y., Sun W. // J. Alloys Compd. 2018. Vol. 753. P. 371. doi 10.1016/j.jallcom.2018.04.183
- 12. Chen Y., Wei J., Duyar M.S., Ordomsky V.V., Khodakov A.Y., Liu J. // Chem. Soc. Rev. 2021. Vol. 50. P. 2337. doi 10.1039/d0cs00905a
- 13. Sharma G., Kumar A., Sharma S., Naushad M., Dwivedi R.P., ALOthman Z.A., Mola G.T. // J. King Saud Univ.-Sci. 2019. Vol. 31. P. 257. doi 10.1016/j.jksus.2017.06.012
- 14. Koutsopoulos S., Barfod R., Eriksen K.M., Fehrmann R. // J. Alloys Compd. 2017. Vol. 725. P. 1210. doi 10.1016/j.jallcom.2017.07.105
- 15. Yang Z.F., Li L.Y., Te Hsieh C., Juang R.-S. // J. Taiwan Inst. Chem. Eng. 2018. Vol. 82. P. 56. doi 10.1016/j.jtice.2017.11.009
- 16. Bader N., Ouederni A. // J. Energy Storage. 2017. Vol. 13. P. 268. doi 10.1016/j.est.2017.07.013
- 17. Akbayrak S., Özçifçi Z., Tabak A. // J. Colloid Interface Sci. 2019. Vol. 546. P. 324. doi 10.1016/j.jcis.2019.03.070
- 18. Ashik U.P.M., Viswan A., Kudo S., Hayashi J. // Appl. Nanomater. 2018. P. 45. doi 10.1016/B978-0-08-101971-9.00003-X
- 19. Horlyck J., Sara M., Lovell E.C., Amal R., Scott J. // ChemCatChem. 2019. P. 1. doi 10.1002/cctc.201900638
- 20. Lam E., Luong J.H.T. // ACS Catal. 2014. Vol. 4. P. 3393. doi 10.1021/cs5008393
- 21. Vasilev A.A., Ivantsov M.I., Dzidziguri E.L., Efimov M.N., Muratov D.G., Kulikova M.V., Zhilyaeva N.A., Karpacheva G.P. // Fuel. 2022. Vol. 310. P. 122455. doi 10.1016/j.fuel.2021.122455
- 22. Yang Y., Chiang K., Burke N. // Catal. Today. 2011. Vol. 178. P. 197. doi 10.1016/j.cattod.2011.08.028
- 23. Sevilla M., Díez N., Fuertes A.B. // ChemSusChem. 2021. Vol. 14. P. 94. doi 10.1002/cssc.202001838.
- 24. Efimov M.N., Vasilev A.A., Muratov D.G., Baranchikov A.E., Karpacheva G.P. // J. Environ. Chem. Eng. 2019. Vol. 7. P. 103514. doi 10.1016/j.jece.2019.103514
- 25. Majekodunmi S.O., Olorunsola E.O., Ofiwe U.C., Udobre A.S., Akpan E. // J. Coast. Life Med. 2017. Vol. 5. P. 321. doi 10.12980/jclm.5.2017j7-2
- 26. Xue R., Shen Z. // Carbon. 2003. Vol. 41. N 9. P. 1862. doi 10.1016/S0008-6223(03)00161-1
- 27. PDF-2. The international center for diffraction data. http://www.icdd.com/translation/pdf2.html
- 28. Esconjauregui S., Whelan C.M., Maex K. // Carbon. 2009. Vol. 47. P. 659. doi 10.1016/j.carbon.2008.10
- 29. Шелехов Е.В., Свиридова Т.А. // Металловедение и термическая обработка металлов. 2000. Т. 8. С. 16
- 30. Shelekhov E.V., Sviridova T.A. // Metal Science and Heat Treatment. 2000. Vol. 42. P. 309. doi 10.1007/ BF02471306
- 31. Taylor A., Sinclair H. // Proc. Phys. Soc. 1945. Vol. 57. P. 126
- 32. Ohnuma I., Enoki H., Ikeda O., Kainuma R., Ohtani H., Sundman B., Ishida K. // Acta Materialia. 2002. Vol. 50. P. 379
- 33. Ferreira M.E.H., Moutinho M.V.O., Stavale F., Lucchese M.M., Capaz R.B., Achete C.A., Jorio A. // Phys. Rev. (B). 2010. Vol 82. doi 10.1103/PhysRevB.82.125429
- 34. Vasilev A.A., Efimov M.N., Bondarenko G.N., Kozlov V.V., Dzidziguri E.L., Karpacheva G.P. // IOP Conf. Ser. Mater. Sci. Eng. 2019. Vol. 693. N 1. P. 012002. doi 10.1088/1757-899X/ 693/1/012002