RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Bisisocyanide cyclometallated platinum(II) complexes: synthesis, structure, photophysical properties, and mechanochromic behavior

PII
10.31857/S0044460X23010134-1
DOI
10.31857/S0044460X23010134
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 1
Pages
113-125
Abstract
A series of cyclometallated platinum(II) complexes [Pt(ppy){CNAr}2]X with two isocyanide ligands (Hppy = 2-phenylpyridine, Ar = C6H2-2,4,6-Me3, C6H3-2-Cl-6-Me , C6H3-2,6-Cl2, C6H4-4-NMe2, C6H4-4-Me, C6H4 4-Cl, C6H4-4-Br, C6H4-4-I, C6H4-4-CF3, C6H4-3-CF3; X = BF4, OTf) was synthesized by the reaction of the [{Pt(ppy)Cl}2] dimer with isocyanides (yield 52-70%). The structure of the resulting complexes was determined using mass spectrometry, 1H, 13C{1H}, 195Pt{1H}, 1H-1H COSY, 1H-1H NOESY, 1H-13C HSQC, and 1H-13C HMBC NMR spectroscopy in solution and solid-state CP/MAS 13C and 195Pt NMR spectroscopy, IR spectroscopy and X-ray diffraction analysis in the solid phase. The photophysical properties of the obtained complexes in the solid phase and the mechanochromic luminescence behavior were studied. In the solid phase, all synthesized compounds phosphoresce in the green or orange range of visible light, while photoluminescence quantum yields reach 26%. Green phosphors exhibit a reversible mechanochromic luminescence change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Keywords
комплексы платины изоцианиды люминесценция механолюминесценция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. Vol. 9. N 3. P. 417. doi 10.1039/d1qi01288f
  2. 2. Adachi C., Baldo M.A., Thompson M.E., Forrest S.R. // J. Appl. Phys. 2001. Vol. 90. N 10. P. 5048. doi 10.1063/1.1409582
  3. 3. Baldo M.A., Lamansky S., Burrows P.E., Thompson M.E., Forrest S.R. // Appl. Phys. Lett. 1999. Vol. 75. N 1. P. 4-6. doi 10.1063/1.124258
  4. 4. McGhie B.S., Aldrich-Wright J.R. // Biomedicines. 2022. Vol. 10. N 3. P. 578. doi 10.3390/biomedicines10030578
  5. 5. Lee L.C.-C., Lo K.K.-W. // J. Am. Chem. Soc. 2022. Vol. 144. N 32. P. 14420. doi 10.1021/jacs.2c03437
  6. 6. Na H., Maity A., Morshed R., Teets T.S. // Organometallics. 2017. Vol. 36. N 15. P. 2965. doi 10.1021/acs.organomet.7b00428
  7. 7. Fornies J., Sicilia V., Larraz C., Camerano J.A., Martin A., Casas J.M., Tsipis A.C. // Organometallics. 2010. Vol. 29. N 6. P. 1396. doi 10.1021/om901032v
  8. 8. Sanning J., Stegemann L., Ewen P.R., Schwermann C., Daniliuc C.G., Zhang D., Lin N., Duan L., Wegner D., Doltsinis N.L., Strassert C.A. // J. Mater. Chem. (C). 2016. Vol. 4. N 13. P. 2560. doi 10.1039/C6TC00093B
  9. 9. Solomatina A.I., Aleksandrova I.O., Karttunen A.J., Tunik S.P., Koshevoy I.O. // Dalton Trans. 2017. Vol. 46. N 12. P. 3895. doi 10.1039/C7DT00349H
  10. 10. Chen Y., Lu W., Che C.-M. // Organometallics. 2013. Vol. 32. N 1. P. 350. doi 10.1021/om300965b
  11. 11. Paziresh S., Babadi Aghakhanpour R., Fuertes S., Sicilia V., Niroomand Hosseini F., Nabavizadeh S.M. // Dalton Trans. 2019. Vol. 48. N 17. P. 5713. doi 10.1039/c9dt00807a
  12. 12. Sutton G.D., Olumba M.E., Nguyen Y.H., Teets T.S. // Dalton Trans. 2021. Vol. 50. N 48. P. 17851. doi 10.1039/D1DT03312C
  13. 13. Katkova S.A., Luzyanin K.V., Novikov A.S., Kinzhalov M.A. // New J. Chem. 2021. Vol. 45. N 6. P. 2948. doi 10.1039/D0NJ05457G
  14. 14. Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. // ACS Omega. 2022. Vol. 7. N 38. P. 34454. doi 10.1021/acsomega.2c04110
  15. 15. Solomatina A.I., Krupenya D.V., Gurzhiy V.V., Zlatkin I., Pushkarev A.P., Bochkarev M.N., Besley N.A., Bichoutskaia E., Tunik S.P. // Dalton Trans. 2015. Vol. 44. N 16. P. 7152. doi 10.1039/c4dt03106g
  16. 16. Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020. Vol. 414. P. 213298. doi 10.1016/j.ccr.2020.213298
  17. 17. Wang P.P., Miao X.R., Meng Y., Wang Q., Wang J., Duan H.H., Li Y.W., Li C.Y., Liu J., Cao L.P. // ACS Appl. Mater. Interfaces. 2020. Vol. 12. N 20. P. 22630. doi 10.1021/acsami.0c04917
  18. 18. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. Vol. 405. P. 213094. doi 10.1016/j.ccr.2019.213094
  19. 19. Diez A., Fornies J., Larraz C., Lalinde E., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Inorg. Chem. 2010. Vol. 49. N 7. P. 3239. doi 10.1021/ic902094c
  20. 20. Martinez-Junquera M., Lara R., Lalinde E., Moreno M.T. // J. Mater. Chem. (C). 2020. Vol. 8. N 21. P. 7221. doi 10.1039/d0tc01163k
  21. 21. Diez A., Fornies J., Fuertes S., Lalinde E., Larraz C., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Organometallics. 2009. Vol. 28. N 6. P. 1705. doi 10.1021/om800845c
  22. 22. Fornies J., Sicilia V., Borja P., Casas J.M., Diez A., Lalinde E., Larraz C., Martin A., Moreno M.T. // Chem. Asian J. 2012. Vol. 7. N 12. P. 2813. doi 10.1002/asia.201200585
  23. 23. Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M., Golbon Haghighi M., Notash B., Fereidoonnezhad M. // New J. Chem. 2017. Vol. 41. N 24. P. 15347. doi 10.1039/C7NJ03110F
  24. 24. Sivchik V.V., Grachova E.V., Melnikov A.S., Smirnov S.N., Ivanov A.Y., Hirva P., Tunik S.P., Koshevoy I.O. // Inorg. Chem. 2016. Vol. 55. N 7. P. 3351. doi 10.1021/acs.inorgchem.5b02713
  25. 25. Dobrynin M.V., Kasatkina S.O., Baykov S.V., Savko P.Y., Antonov N.S., Mikherdov A.S., Boyarskiy V.P., Islamova R.M. // Dalton Trans. 2021. Vol. 50. N 42. P. 14994. doi 10.1039/D1DT02823E
  26. 26. Dobrynin M.V., Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Starova G.L., Kukushkin V.Y., Islamova R.M. // ACS Appl. Polymer Mater. 2021. Vol. 3. N 2. P. 857. doi 10.1021/acsapm.0c01190
  27. 27. Anderson C., Crespo M., Morris J., Tanski J.M. // J. Organomet. Chem. 2006. Vol. 691. N 26. P. 5635. doi 10.1016/j.jorganchem.2006.09.012
  28. 28. Liu J., Leung C.H., Chow A.L.F., Sun R.W.Y., Yan S.C., Che C.M. // Chem. Commun. 2011. Vol. 47. N 2. P. 719. doi 10.1039/c0cc03641b
  29. 29. Sun R.W.Y., Chow A.L.F., Li X.H., Yan J.J., Chui S.S.Y., Che C.M. // Chem. Sci. 2011. Vol. 2. N 4. P. 728. doi 10.1039/c0sc00593b
  30. 30. Sagara Y., Kato T. // Nat. Chem. 2009. Vol. 1. N 8. P. 605. doi 10.1038/nchem.411
  31. 31. Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y., Liu S., Xu J. // Chem. Soc. Rev. 2012. Vol. 41. N 10. P. 3878. doi 10.1039/C2CS35016E
  32. 32. Sagara Y., Yamane S., Mitani M., Weder C., Kato T. // Adv. Mater. 2016. Vol. 28. N 6. P. 1073. doi 10.1002/adma.201502589
  33. 33. Huang Q., Li W., Yang Z., Zhao J., Li Y., Mao Z., Yang Z., Liu S., Zhang Y., Chi Z. // CCS Chem. 2022. Vol. 4. N 5. P. 1643. doi doi10.31635/ccschem.021.202100968
  34. 34. Su M., Liu S., Zhang J., Meng C., Ni J. // Dyes Pigm. 2022. Vol. 200. P. 110139. doi 10.1016/j.dyepig.2022.110139
  35. 35. Ito S. // CrystEngComm. 2022. Vol. 24. N 6. P. 1112. doi 10.1039/D1CE01614H
  36. 36. Riesebeck T., Bertrams M.-S., Stipurin S., Konowski K., Kerzig C., Strassner T. // Inorg. Chem. 2022. Vol. 56. N16. P. 9391. doi 10.1021/acs.inorgchem.2c02141
  37. 37. Zhang H.-H., Wu S.-X., Wang Y.-Q., Xie T.-G., Sun S.-S., Liu Y.-L., Han L.-Z., Zhang X.-P., Shi Z.-F. // Dyes Pigm. 2022. Vol. 197. P. 109857. doi 10.1016/j.dyepig.2021.109857
  38. 38. Yang C.-J., Yi C., Xu M., Wang J.-H., Liu Y.-Z., Gao X.-C., Fu J.-W. // Appl. Phys. Lett. 2006. Vol. 89. N 23. P. 233506. doi 10.1063/1.2400395
  39. 39. Ni J., Liu G., Su M., Zheng W., Zhang J. // Dyes Pigm. 2020. Vol. 180. P. 108451. doi 10.1016/j.dyepig.2020.108451
  40. 40. Каткова С.А., Лещев А.А., Михердов А.С., Кинжалов М.А. // ЖОХ. 2020. Т. 90. № 4. С. 591
  41. 41. Katkova S.A., Leshchev A.A., Mikherdov A.S., Kinzhalov M.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 648. doi 10.1134/s1070363220040143
  42. 42. Каткова С.А., Михердов А.С., Новиков А.С., Старова Г.Л., Кинжалов М.А. // ЖОХ. 2021. Т. 91. № 3. С. 430
  43. 43. Katkova S.A., Eliseev I.I., Mikherdov A.S., Sokolova E.V., Starova G.L., Kinzhalov M.A. // Russ. J. Gen. Chem. 2021. Vol. 91. N 3. P. 393. doi 10.1134/s1070363221030099
  44. 44. Katkova S.A., Mikherdov A.S., Sokolova E.V., Novikov A.S., Starova G.L., Kinzhalov M.A. // J. Mol. Struct. 2022. Vol. 1253. P. 132230. doi 10.1016/j.molstruc.2021.132230
  45. 45. Diez-Gonzalez S., Nolan S.P. // Coord. Chem. Rev. 2007. Vol. 251. N 5-6. P. 874. doi 10.1016/j.ccr.2006.10.004
  46. 46. Sicilia V., Fuertes S., Martin A., Palacios A. // Organometallics. 2013. Vol. 32. N 15. P. 4092. doi 10.1021/om400159g
  47. 47. Popov R.A., Mikherdov A.S., Boyarskiy V.P. // Eur. J. Inorg. Chem. 2022. Vol. 2022. N 26. P. e202200217. doi 10.1002/ejic.202200217.
  48. 48. Кинжалов М.А., Кашина М.В., Михердов А.С., Каткова С.А, Суслонов В.В. // ЖOX, 2018. T. 88. № 6. С. 1000
  49. 49. Kinzhalov M.A., Kashina M.V., Mikherdov A.S., Katkova S.A., Suslonov V.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1180. doi 10.1134/S107036321806021X
  50. 50. Кинжалов М.А., Боярский В.П. // ЖОХ. 2015. Т. 85. № 10. С. 1681
  51. 51. Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. Vol. 85. N 10. P. 2313. doi 10.1134/S1070363215100175
  52. 52. Beer H., Bresien J., Michalik D., Rölke A.-K., Schulz A., Villinger A., Wustrack R. // J. Org. Chem. 2020. Vol. 85. N 22. P. 14435. doi 10.1021/acs.joc.0c00460.
  53. 53. Guirado A., Zapata A., Gómez J.L., Trabalón L., Gálvez J. // Tetrahedron. 1999. Vol. 55. N 31. P. 9631. doi 10.1016/S0040-4020(99)00509-8
  54. 54. Pazderski L., Pawlak T., Sitkowski J., Kozerski L., Szłyk E. // Magn. Reson. Chem.. 2009. Vol. 47. N 11. P. 932. doi 10.1002/mrc.2491
  55. 55. Bondi A. // J. Phys. Chem. 1964. Vol. 68. N 3. P. 441. doi 10.1021/j100785a001
  56. 56. Fuertes S., Chueca A.J., Peralvarez M., Borja P., Torrell M., Carreras J., Sicilia V. // ACS Appl. Mater. Interfaces. 2016. Vol. 8. N 25. P. 16160. doi 10.1021/acsami.6b03288
  57. 57. Kinzhalov M.A., Katkova S.A., Doronina E.P., Novikov A.S., Eliseev I., Ilichev V.A., Kukinov A.A., Starova G.L., Bokach N.A. // Zeit. Kristallogr. Cryst. Mater. 2018. Vol. 233. N 11. P. 795. doi 10.1515/zkri-2018-2075
  58. 58. Shimizu M. In: Aggregation-Induced Emission. Elsevier, 2022. Ch. 8. Р. 253.
  59. 59. Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. Vol. 44. N 6. P. 1281. doi 10.1107/S0021889811043202
  60. 60. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339. doi 10.1107/S0021889808042726
  61. 61. CrysAlisPro A.T., Version 1.171.36.20 (release 27-06-2012).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library