RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Photochemical production of molecular hydrogen in the presence of substituted acridine salts

PII
10.31857/S0044460X23010092-1
DOI
10.31857/S0044460X23010092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 1
Pages
77-83
Abstract
The photocatalytic properties of new representatives of the family of metal-free catalysts, 10-hydro-9-phenylacridine, 10-methyl-9-phenylacridinium chloride, and 10-phenyl-9-phenylacridinium chloride, were studied with respect to the reaction of molecular hydrogen generation in the presence of acids of different strength (HClO4, CH3SO3H, and CF3COOH) and reducing agents ([Bu4N]Cl, [Bu4N]Br, and [Bu4N]I). It was found that the strength of acids (p K a) and the nature of the reducing agent ( E 0) significantly affect the efficiency, i.e. turnover frequency (TOF), of the process under study. The amount of formed molecular hydrogen reaches its maximum in the case of the combination HClO4 and [Bu4N]I, characterized by minimal p K a and E0 values, respectively. The influence of the nature of substituents at the nitrogen atom in 9-phenylacridine on the efficiency of the molecular hydrogen production was analyzed. It was shown that the limiting stage of the process is the protonation of the formed radical.
Keywords
фотокатализ соли акридина молекулярный водород фотокаталитические свойства
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Spasiano D., Marotta R., Malato S., Fernandez P.I., Somma D. // Appl. Catal. (B). 2015. Vol. 170-171. P. 90. doi 10.1016/j.apcatb.2014.12.050
  2. 2. Goff A.L., Artero V., Jousselme B., Tran P.D., Guillet N., Métayé R., Fihri A., Palacin S., Fontecave M. // Science. 2009. Vol. 326. P. 1384. doi 10.1126/science.1179773
  3. 3. Lazarides T. // J. Am. Chem. Soc. 2009. Vol. 131. P. 9192. doi 10.1021/ja903044n
  4. 4. Esswein A.J., Nocera D.G. // Chem. Rev. 2007. Vol. 107. N 10. P. 4022. doi 10.1021/cr050193e
  5. 5. Krishnan C.V., Sutin N. // J. Am. Chem. Soc. 1981. Vol. 103. P. 2141. doi 10.1021/ja00398a066
  6. 6. Krishnan C.V., Brunschwig B.S., Creutz C., Sutin N. // J. Am. Chem. Soc. 1985. Vol. 107. P. 2005. doi 10.1021/ja00293a035
  7. 7. Lei J.-M., Luo S.-P., Zhan S.-Z. // Polyhedron. 2018. Vol. 154. P. 295. doi 10.1016/j.poly.2018.07.040
  8. 8. Gueret R., Poulard L., Oshinowo M., Chauvin J., Dahmane M., Dupeyre G., Lainé P.P., Fortage J., Collomb M.-N. // ACS Catal. 2018. Vol. 8. P. 3792. doi 10.1021/acscatal.7b04000
  9. 9. Takizawa S., Pérez-Bolívar C., Anzenbacher P.Jr., Murata S. // Eur. J. Inorg. Chem. 2012. Vol. 2012. P. 3975. doi 10.1002/ejic.201200474
  10. 10. Yu Z.-T., Yuan Y.-J., Cai J.-G., Zou Z.-G. // Chem. Eur. J. 2013. Vol. 19. P. 1303. doi 10.1002/chem.201203029
  11. 11. Yuan Y.-J., Yu Z.-T., Gao H.-L., Zou Z.-G., Zheng C., Huang W. // Chem. Eur. J. 2013. Vol. 19. P. 6340. doi 10.1002/chem.201300146
  12. 12. Wang X.-B., Zheng H.-Q., Rao H., Yao H.-C., Fan Y.-T., Hou H.-W. // Appl. Organometal. Chem. 2016. Vol. 30. P. 638. doi 10.1002/aoc.3481
  13. 13. Wang J., Li C., Zhou Q., Wang W., Hou Y., Zhang B., Wang X. // Dalton Trans. 2016. Vol. 45. P. 5439. doi 10.1039/C5DT04628A
  14. 14. Helm M.L., Stewart M.P., Bullock R.M., DuBois M.R., DuBois D. // Science. 2011. Vol. 333. P. 863. doi 10.1126/science.1205864
  15. 15. Mazzeo A., Santalla S., Gaviglio C., Doctorovich F., Pellegrino J. // J. Inorg. Chim. Acta. 2020. Vol. 517. P. 119950. doi 10.1016/j.ica.2020.119950
  16. 16. Selvamani T., Anandan S., Ashokkumar M. In: Micro and Nano Technologies. Nanoscale Graphitic Carbon Nitride. Elsevier, 2022. P. 17. doi 10.1016/B978-0-12-823034-3.00002-9
  17. 17. Romero N.A., Nicewicz D.A. // Chem. Rev. 2016. Vol. 116. P. 9629. doi 10.1021/acs.chemrev.6b00057
  18. 18. Fukuzumi S., Lee Y.-M., Nam W. // Springer Handbook of Inorganic Photochemistry. 2022. P. 1385. doi 10.1007/978-3-030-63713-2_46
  19. 19. Dolganov A.V., Tanaseichuk B.S., Moiseeva D.N., Yurova V.Y., Sakanyan J.R., Schmelkova N.S., Lobanov V.V. // Electrochem. Commun. 2016. Vol. 68. P. 59. doi 10.1016/j.elecom.2016.04.015
  20. 20. Долганов А.В., Баландина A.В., Чугунов Д.Б., Тимонина А.С., Люкшина Ю.И., Ахматова А.А., Юдина А.Д., Шиндина В.В., Жирнова В.О., Климаева Л.А., Осипов А.К. // ЖОХ. 2020. Т. 90. Вып. 7. С. 1040
  21. 21. Dolganov A.V., Balandina A.V., Chugunov D.B., Timonina A.S., Lyukshina Yu.I., Akhmatova A.A., Yudina A.D., Shindina V.V., Zhirnova V.O., Klimaeva L.A., Osipov A.K. // Russ. J. Gen. Chem. 2020. Vol. 90. N 7. P. 1229. doi 10.1134/s1070363220070099
  22. 22. Kotani H., Ono T., Ohkubo K., Fukuzumi S. // Phys. Chem. Chem. Phys. 2007. Vol. 9. P. 1487. doi 10.1039/b612794k
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library