- PII
- S3034559625090127-1
- DOI
- 10.7868/S3034559625090127
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 95 / Issue number 9-10
- Pages
- 465-471
- Abstract
- The effect of the coordination environment on the photoluminescence of crystalline cerium trihalides CeL (L = F, Cl, Br, I) was investigated. It was found that in the series of anions F > Cl > Br > I a bathochromic shift of luminescence maxima is observed, which is correlated with an increase in the degree of Ce-L bond covalency and anion polarisability. Using PBE/3ζ density functional theory and classical Pauling’s approach, calculations of anion polarisability and Ce-L bonding parameters were carried out, revealing a direct correlation between these values and the long-wavelength shift of maxima. This fact allows us to postulate that the bathochromic shift of maxima in the photoluminescence and photoluminescence excitation spectra of solid CeL is due to the nepheloxetic effect, namely, an increase in the degree of covalency of the Ce-L bond, leading to a decrease in the energy gap between the valence zone (np-levels of L) and the conduction zone (5d-levels of Ce). The results demonstrate the possibility of controlling the spectral characteristics of the luminescence of Ce compounds by changing the coordination environment, which is important for the development of new cerium-containing luminophores.
- Keywords
- трехвалентный ион церия координационное окружение фотолюминесценция нефелоксетический эффект
- Date of publication
- 21.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 43
References
- 1. De Acha N., Elosua C., Matias I., Arregui F.J. // Sensors. 2017. Vol. 17. P. 2826. doi 10.3390/s17122826
- 2. Gomes J., Serra O.A. // J. Mater. Sci. 2008. Vol. 43. P. 546. doi 10.1007/s10853-007-1777-5
- 3. Jing H., Guo C., Zhang G., Su X., Yang Z., Jeong J.H. // J. Mater. Chem. 2012. Vol. 22. P. 13612. doi 10.1039/ C2JM32761A
- 4. Samir E., Shehata N., Kandas I. // J. Nanophoton. 2018. Vol. 12. P. 016007-1
- 5. Qiao Y., Schelter E.J. // Acc. Chem. Res. 2018. Vol. 51. P. 2926. doi 10.1021/acs.accounts.8b00336
- 6. Yin H., Carroll P.J., Manor B.C., Anna J.M., Schelter E.J. // J. Am. Chem. Soc. 2016. Vol. 138. P. 5984. doi 10.1021/ jacs.6b02248
- 7. Guo J.-J., Hu A., Chen Y., Sun J., Tang H., Zuo Z. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 15319. doi 10.1002/anie.201609035
- 8. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 155. doi 10.1016/ S0022-2313(00)00229-5
- 9. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 91. doi 10.1016/ s0022-2313(00)00197-6
- 10. Hazin P.N., Lakshminarayan C., Brinen L.S., Knee J.L., Bruno J.W., Streib W.E., Folting K. // Inorg. Chem. 1988. Vol. 27. P. 1393. doi 10.1021/ic00281a019
- 11. Kaminskii A.A. Crystalline lasers: Physical processes and operating schemes. CRC Press: Boca Raton, 1996. 592 p.
- 12. Kochan O., Chornodolskyy Y., Selech J., Karnaushenko V., Przystupa K., Kotlov A., Demkiv T., Vistovskyy V., Stryhanyuk H., Rodnyi P., Gektin A., Voloshinovskii A. // Materials. 2021. Vol. 14. P. 4243. doi 10.3390/ma14154243
- 13. Meyer L.V., Schonfeld F., Zurawski A., Mai M., Feldmann C., Muller-Buschbaum K. // Dalton Trans. 2015. Vol. 44. P. 4070. doi 10.1039/C4DT03578J
- 14. Blasse G., Bril A. // J. Chem. Phys. 1967. Vol. 47. P. 5139. doi 10.1063/1.1701771
- 15. Wang J., Mei Y., Tanner P.A. // J. Lumin. 2014. Vol. 146. P. 440. doi 10.1016/j.jlumin.2013.10.030
- 16. Sun Z., Li Y., Zhang X., Yao M., Ma L., Chen W. // J. Nanosci. Nanotech. 2009. Vol. 9. P. 6283. doi 10.1166/ jnn.2009.1821
- 17. Sharipov G.L., Gareev B.M., Vasilyuk K.S., Galimov D.I., Abdrakhmanov A.M. // Ultrason. Sonochem. 2021. Vol. 70. P. 105313. doi 10.1016/j.ultsonch.2020.105313
- 18. Wang C., Liu X., She C., Li Y. // Polyhedron. 2021. Vol. 196. P. 115013. doi 10.1016/j.poly.2020.115013
- 19. Bulgakov R.G., Gazeeva D.R., Galimov D.I. // J. Lumin. 2017. Vol. 183. P. 159. doi 10.1016/j.jlumin.2016.11.030
- 20. Kunkely H., Vogler A. // Inorg. Chem. Commun. 2006. Vol. 9. P. 1. doi 10.1016/j.inoche.2005.08.017
- 21. Hazin P.N., Bruno J.W., Brittain H.G. // Organometal. 1987. Vol. 6. P. 913. doi 10.1021/om00148a002
- 22. Ruščić B., Goodman G.L., Berkowitz J. // J. Chem. Phys. 1983. Vol. 78. P. 5443. doi 10.1063/1.445473
- 23. Chornodolskyy Y., Karnaushenko V., Vistovskyy V., Syrotyuk S., Gektin A., Voloshinovskii A. // J. Lumin. 2021. Vol. 237. P. 118147. doi 10.1016/j.jlumin.2021.118147
- 24. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Sabirov D.Sh., Bulgakov R.G. // J. Photochem. Photobiol. A. 2020. Vol. 403. P. 112839. doi 10.1016/j.jphotochem.2020.112839
- 25. Blasse G., Bril A. // Philips Techn. Rev. 1970. Vol. 31. P. 303.
- 26. Звонарев Е.Н., Козлов О.И., Колегов Д.Ф., Маширев В.Л., Шаталов В.В., Басиев Т.Т., Дорошенко М.Е., Конюшкин В.А., Осико В.В., Папашвили А.Г., Сигачев В.Б., Гурский И.Э., Кафтанов В.С., Семенов Ю.А. // Атомная энергия. 1997. Т. 82. Вып. 4. С. 301.
- 27. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Bulgakov R.G. // J. Photochem. Photobiol. (A). 2024. Vol. 451. P. 115489. doi 10.1016/j.jphotochem.2024.115489
- 28. Wasse J.C., Salmon P.S. // J. Phys. Condens. Matter. 1999. Vol. 11. P. 1381. doi 10.1088/0953-8984/11/6/004
- 29. Nishida I., Tatsumi K., Muto Sh. // Mater. Trans. 2009. Vol. 50. No. 5 P. 952. doi 10.2320/matertrans.MC200828
- 30. Pyykkö P., Atsumi M. // Chem. Eur. J. 2009. Vol. 15. P. 186. doi 10.1002/chem.200800987
- 31. Li K., Xue D. // J. Phys. Chem. (A). 2006. Vol. 110. P. 11332. doi 10.1021/jp062886k
- 32. Pauling L. The Nature of the Chemical Bond. Cornell University Press, 1960. 644 p.
- 33. Jorgensen C.K. // Progr. Inorg. Chem. 1962. Vol. 4. P. 73.
- 34. Dorenbos P. // Phys. Rev. (B). 2000. Vol. 62. P. 15640. doi 10.1103/PhysRevB.62.15640
- 35. Dorenbos P. // J. Lumin. 2003. Vol. 104. P. 239. doi 10.1016/S0022-2313(03)00078-4
- 36. Dorenbos P. // Phys. Rev. (B). 2002. Vol. 65. P. 235110. doi 10.1103/PhysRevB.65.235110
- 37. Dorenbos P. // J. Mater. Chem. 2012. Vol. 22. P. 22344. doi 10.1039/C2JM34252A
- 38. Behrsing T., Bond A.M., Deacon G.B., Forsyth C.M., Forsyth M., Kamble K.J., Skelton B.W., White A.H. // Inorg. Chim. Acta. 2003. Vol. 352. P. 229. doi:10.1016/ S0020-1693(03)00147-6
- 39. Laikov D.N., Ustynyuk L.A. // Russ. Chem. Bull. Int. Ed. 2005. Vol. 54. P. 820. doi 10.1007/s11172-005-0329-x
- 40. Sabirov D.Sh., Zakirova A.D., Tukhbatullina A.A., Gubaydullin I.M., Bulgakov R.G. // RSC Adv. 2013. Vol. 3. P. 1818. doi 10.1039/c2ra22404f