RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Effect of Coordination Environment on Luminescence of Crystalline Cerium Halides

PII
S3034559625090127-1
DOI
10.7868/S3034559625090127
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 9-10
Pages
465-471
Abstract
The effect of the coordination environment on the photoluminescence of crystalline cerium trihalides CeL (L = F, Cl, Br, I) was investigated. It was found that in the series of anions F > Cl > Br > I a bathochromic shift of luminescence maxima is observed, which is correlated with an increase in the degree of Ce-L bond covalency and anion polarisability. Using PBE/3ζ density functional theory and classical Pauling’s approach, calculations of anion polarisability and Ce-L bonding parameters were carried out, revealing a direct correlation between these values and the long-wavelength shift of maxima. This fact allows us to postulate that the bathochromic shift of maxima in the photoluminescence and photoluminescence excitation spectra of solid CeL is due to the nepheloxetic effect, namely, an increase in the degree of covalency of the Ce-L bond, leading to a decrease in the energy gap between the valence zone (np-levels of L) and the conduction zone (5d-levels of Ce). The results demonstrate the possibility of controlling the spectral characteristics of the luminescence of Ce compounds by changing the coordination environment, which is important for the development of new cerium-containing luminophores.
Keywords
трехвалентный ион церия координационное окружение фотолюминесценция нефелоксетический эффект
Date of publication
21.12.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. De Acha N., Elosua C., Matias I., Arregui F.J. // Sensors. 2017. Vol. 17. P. 2826. doi 10.3390/s17122826
  2. 2. Gomes J., Serra O.A. // J. Mater. Sci. 2008. Vol. 43. P. 546. doi 10.1007/s10853-007-1777-5
  3. 3. Jing H., Guo C., Zhang G., Su X., Yang Z., Jeong J.H. // J. Mater. Chem. 2012. Vol. 22. P. 13612. doi 10.1039/ C2JM32761A
  4. 4. Samir E., Shehata N., Kandas I. // J. Nanophoton. 2018. Vol. 12. P. 016007-1
  5. 5. Qiao Y., Schelter E.J. // Acc. Chem. Res. 2018. Vol. 51. P. 2926. doi 10.1021/acs.accounts.8b00336
  6. 6. Yin H., Carroll P.J., Manor B.C., Anna J.M., Schelter E.J. // J. Am. Chem. Soc. 2016. Vol. 138. P. 5984. doi 10.1021/ jacs.6b02248
  7. 7. Guo J.-J., Hu A., Chen Y., Sun J., Tang H., Zuo Z. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 15319. doi 10.1002/anie.201609035
  8. 8. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 155. doi 10.1016/ S0022-2313(00)00229-5
  9. 9. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 91. doi 10.1016/ s0022-2313(00)00197-6
  10. 10. Hazin P.N., Lakshminarayan C., Brinen L.S., Knee J.L., Bruno J.W., Streib W.E., Folting K. // Inorg. Chem. 1988. Vol. 27. P. 1393. doi 10.1021/ic00281a019
  11. 11. Kaminskii A.A. Crystalline lasers: Physical processes and operating schemes. CRC Press: Boca Raton, 1996. 592 p.
  12. 12. Kochan O., Chornodolskyy Y., Selech J., Karnaushenko V., Przystupa K., Kotlov A., Demkiv T., Vistovskyy V., Stryhanyuk H., Rodnyi P., Gektin A., Voloshinovskii A. // Materials. 2021. Vol. 14. P. 4243. doi 10.3390/ma14154243
  13. 13. Meyer L.V., Schonfeld F., Zurawski A., Mai M., Feldmann C., Muller-Buschbaum K. // Dalton Trans. 2015. Vol. 44. P. 4070. doi 10.1039/C4DT03578J
  14. 14. Blasse G., Bril A. // J. Chem. Phys. 1967. Vol. 47. P. 5139. doi 10.1063/1.1701771
  15. 15. Wang J., Mei Y., Tanner P.A. // J. Lumin. 2014. Vol. 146. P. 440. doi 10.1016/j.jlumin.2013.10.030
  16. 16. Sun Z., Li Y., Zhang X., Yao M., Ma L., Chen W. // J. Nanosci. Nanotech. 2009. Vol. 9. P. 6283. doi 10.1166/ jnn.2009.1821
  17. 17. Sharipov G.L., Gareev B.M., Vasilyuk K.S., Galimov D.I., Abdrakhmanov A.M. // Ultrason. Sonochem. 2021. Vol. 70. P. 105313. doi 10.1016/j.ultsonch.2020.105313
  18. 18. Wang C., Liu X., She C., Li Y. // Polyhedron. 2021. Vol. 196. P. 115013. doi 10.1016/j.poly.2020.115013
  19. 19. Bulgakov R.G., Gazeeva D.R., Galimov D.I. // J. Lumin. 2017. Vol. 183. P. 159. doi 10.1016/j.jlumin.2016.11.030
  20. 20. Kunkely H., Vogler A. // Inorg. Chem. Commun. 2006. Vol. 9. P. 1. doi 10.1016/j.inoche.2005.08.017
  21. 21. Hazin P.N., Bruno J.W., Brittain H.G. // Organometal. 1987. Vol. 6. P. 913. doi 10.1021/om00148a002
  22. 22. Ruščić B., Goodman G.L., Berkowitz J. // J. Chem. Phys. 1983. Vol. 78. P. 5443. doi 10.1063/1.445473
  23. 23. Chornodolskyy Y., Karnaushenko V., Vistovskyy V., Syrotyuk S., Gektin A., Voloshinovskii A. // J. Lumin. 2021. Vol. 237. P. 118147. doi 10.1016/j.jlumin.2021.118147
  24. 24. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Sabirov D.Sh., Bulgakov R.G. // J. Photochem. Photobiol. A. 2020. Vol. 403. P. 112839. doi 10.1016/j.jphotochem.2020.112839
  25. 25. Blasse G., Bril A. // Philips Techn. Rev. 1970. Vol. 31. P. 303.
  26. 26. Звонарев Е.Н., Козлов О.И., Колегов Д.Ф., Маширев В.Л., Шаталов В.В., Басиев Т.Т., Дорошенко М.Е., Конюшкин В.А., Осико В.В., Папашвили А.Г., Сигачев В.Б., Гурский И.Э., Кафтанов В.С., Семенов Ю.А. // Атомная энергия. 1997. Т. 82. Вып. 4. С. 301.
  27. 27. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Bulgakov R.G. // J. Photochem. Photobiol. (A). 2024. Vol. 451. P. 115489. doi 10.1016/j.jphotochem.2024.115489
  28. 28. Wasse J.C., Salmon P.S. // J. Phys. Condens. Matter. 1999. Vol. 11. P. 1381. doi 10.1088/0953-8984/11/6/004
  29. 29. Nishida I., Tatsumi K., Muto Sh. // Mater. Trans. 2009. Vol. 50. No. 5 P. 952. doi 10.2320/matertrans.MC200828
  30. 30. Pyykkö P., Atsumi M. // Chem. Eur. J. 2009. Vol. 15. P. 186. doi 10.1002/chem.200800987
  31. 31. Li K., Xue D. // J. Phys. Chem. (A). 2006. Vol. 110. P. 11332. doi 10.1021/jp062886k
  32. 32. Pauling L. The Nature of the Chemical Bond. Cornell University Press, 1960. 644 p.
  33. 33. Jorgensen C.K. // Progr. Inorg. Chem. 1962. Vol. 4. P. 73.
  34. 34. Dorenbos P. // Phys. Rev. (B). 2000. Vol. 62. P. 15640. doi 10.1103/PhysRevB.62.15640
  35. 35. Dorenbos P. // J. Lumin. 2003. Vol. 104. P. 239. doi 10.1016/S0022-2313(03)00078-4
  36. 36. Dorenbos P. // Phys. Rev. (B). 2002. Vol. 65. P. 235110. doi 10.1103/PhysRevB.65.235110
  37. 37. Dorenbos P. // J. Mater. Chem. 2012. Vol. 22. P. 22344. doi 10.1039/C2JM34252A
  38. 38. Behrsing T., Bond A.M., Deacon G.B., Forsyth C.M., Forsyth M., Kamble K.J., Skelton B.W., White A.H. // Inorg. Chim. Acta. 2003. Vol. 352. P. 229. doi:10.1016/ S0020-1693(03)00147-6
  39. 39. Laikov D.N., Ustynyuk L.A. // Russ. Chem. Bull. Int. Ed. 2005. Vol. 54. P. 820. doi 10.1007/s11172-005-0329-x
  40. 40. Sabirov D.Sh., Zakirova A.D., Tukhbatullina A.A., Gubaydullin I.M., Bulgakov R.G. // RSC Adv. 2013. Vol. 3. P. 1818. doi 10.1039/c2ra22404f
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library