- PII
- S3034559625090119-1
- DOI
- 10.7868/S3034559625090119
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 95 / Issue number 9-10
- Pages
- 456-464
- Abstract
- Cubic pyrochlore BiCuNiCoTaO [space group Fd-3m, a = 10.5323(8) Å] was synthesized from oxides for the first time using the solid-phase reaction method. The ceramics are characterized by a low-porosity grain-free microstructure. The chemical state of transition element cations in multi-element pyrochlore was characterized using photoelectron spectroscopy (XPS) and NEXAFS. For pyrochlore, a characteristic shift of the Ta4f spectrum to lower energies by 0.65 eV is observed, which causes the effective charge of tantalum cations +(5–δ). It is shown that the NEXAFS Cu2p spectra of oxide ceramics, according to the main characteristics of the spectrum, represent a superposition of the spectra of Cu(I) and Cu(II) cations. Based on the analysis of the relative intensity of the peaks in the XPS spectrum of Cu2p, the quantitative ratio of Cu(I)/Cu(II) cations in pyrochlore is 1.06. The NEXAFS Ni2p spectrum of ceramics coincides with the spectrum of NiO according to the main characteristics of the spectrum. XPS studies indicate the state of Ni(III). According to the nature of the Co2p spectrum, cobalt ions are in the state of Co(II,III).
- Keywords
- керамика пирохлор рентгеновская спектроскопия переходные элементы зарядовое состояние
- Date of publication
- 21.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 43
References
- 1. Hiroi Z., Yamaura J.-I., Yonezawa S., Harimaп H. // Physica (C). 2007. Vol. 460–462. P. 20. doi 10.1016/ j.physc.2007.03.023
- 2. Giampaoli G., Siritanon T., Day B., Subramanian M.A. // Prog. Solid State Chem. 2018. Vol.50, P. 16. doi 10.1016/ j.progsolidstchem.2018.06.001
- 3. Du H., Yao X. // J. Mater. Sci. Mater. Electron. 2004. Vol. 15. P. 613. doi 10.1023/B:JMSE.0000036041.84889.b2
- 4. Murugesan S., Huda M.N., Yan Y., Al-Jassim M.M., Subramanian V. // J. Phys. Chem. (C). 2010. Vol. 114. P. 10598. doi 10.1021/j.p906252r
- 5. Lufaso M.W., Vanderah T.A., Pazos I.M., Pazos Il.M., Levin I., Roth R.S., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3900. doi 10.1016/ j.jssc.2006.08.036
- 6. Vanderah T.A., Lufaso M.W., Adler A.U., Levin I., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3467. doi 10.1016/j.jssc.2006.07.014
- 7. Levin I., Amos T.G., Nino J.C., Vanderah T.A., Randall C.A., Lanagan M.T. // J. Solid State Chem. 2002. Vol. 168. P. 69. doi 10.1006/jssc.2002.9681
- 8. Nguyen H.B., Noren L., Liu Y., Withers R., Wei X., Elcombe M.M. // J. Solid State Chem. 2007. Vol. 180. P. 2558. doi 10.1016/j.jssc.2007.07.003
- 9. Vanderah T.A., Siegrist T., Lufaso M.W., Yeager M.C., Roth R.S., Nino J.C., Yates S. // Eur. J. Inorg. Chem. 2006. P. 4908. doi 10.1002/ejic.200600661
- 10. Zhuk N.A., Sekushin N.А., Krzhizhanovskaya M.G., Kharton V.V. // Solid State Ionics. 2022. Vol. 377. P. 115868. doi 10.1016/j.ssi.2022.115868
- 11. Zhuk N.A., Sekushin N.A., Semenov V.G., Fedorova A.V., Selyutin A.A., Krzhizhanovskaya M.G., Lutoev V.P., Makeev B.A., Kharton V.V., Sivkov D.N., Shpynova A.D. // J. Alloys Compd. 2022. Vol. 903. P. 163928. doi 10.1016/ j.jallcom.2022.163928
- 12. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol.15, P. 55. doi 10.1016/0079-6786(83)90001-8
- 13. Kamba S., Porokhonskyy V., Pashkin A., Bovtun V., Petzelt J., Nino J.C., Trolier-McKinstry S., Lanagan M.T., Randall C.A. // Phys. Rev. (B). 2002. Vol. 66. P. 054106. doi 10.1103/PhysRevB.66.054106
- 14. Valant M. // J. Am. Ceram. Soc. 2009. Vol. 92. P. 955. doi 10.1111/j.1551-2916.2009. 02984.x
- 15. Rylchenko E.P., Makeev B.A., Sivkov D.V., Korolev R.I., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 486. doi 10.22226/2410-3535-2022-4-486-492
- 16. Parshukova K.N., Sekushin N.A., Makeev B.A, Krzhizhanovskaya M.G., Koroleva A.V., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 469. doi 10.22226/2410-3535-20224-469-474
- 17. Akselrud L.G., Grin Y.N., Zavalii P.Y., Pecharsky V.K., Fundamenskii V.S. // Thes. Rep. XII Eur. Crystallogr. Meet. 1989. P. 155.
- 18. Zhuk N.A., Krzhizhanovskaya M.G., Koroleva A.V., Koroleva A.V., Nekipelov S.V., Kharton V.V., Seku shin N.A. // Inorg. Chem. 2021. Vol. 60. P. 4924. doi 10.1021/ acs.inorgchem.1c00007
- 19. Zhuk N.A., Krzhizhanovskaya M.G., Sekushin N.A., Sivkov D.V., Abdurakhmanov I.E. // J. Mater. Res. Technol. 2023. Vol. 22. P. 1791. doi 10.1016/j.jmrt.2022.12.059
- 20. Shannon R.D. // Acta Crystallogr. (А). 1976. Vol. 32. P. 751. doi 10.1107/S0567739476001551
- 21. Hassel M., Freund H.-J. // Surface Science Spectra. 1996. Vol. 4. P. 273. doi 10.1116/1.1247797
- 22. Regan T.J., Ohldag H., Stamm C., Nolting F., Lüning J., Stöhr J., White R.L. // Phys. Rev. (B). 2001. Vol. 64. P. 214422. doi 10.1103/PhysRevB.64.214422
- 23. Mansour A.N., Melendres C.A. // Surface Science Spectra. 1994. Vol. 3. P. 263. doi 10.1116/1.1247755
- 24. Preda I., Abbate M., Gutiérrez A., Palacín S., Vollmer A., Soriano L. // J. Electron Spectrosc. 2007. Vol. 156–158. P. 111. doi 10.1016/j.elspec.2006.11.030
- 25. Barreca D., Gasparotto A., Tondello E. // Surface Science Spectra 2007. Vol. 14. P. 41. doi 10.1116/11.20080701
- 26. Grioni M., van Acker J.F., Czyžyk M.T., Fuggle J.C. // Phys. Rev. (B). 1992. Vol. 45. P. 3309. https:// doi.org/10.1103/physrevb.45.3309