RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Determination of the Charge State of Transition Metal Ions in Pyrochlore BiCuNiCoTaO by X-Ray Absorption Spectroscopy

PII
S3034559625090119-1
DOI
10.7868/S3034559625090119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 9-10
Pages
456-464
Abstract
Cubic pyrochlore BiCuNiCoTaO [space group Fd-3m, a = 10.5323(8) Å] was synthesized from oxides for the first time using the solid-phase reaction method. The ceramics are characterized by a low-porosity grain-free microstructure. The chemical state of transition element cations in multi-element pyrochlore was characterized using photoelectron spectroscopy (XPS) and NEXAFS. For pyrochlore, a characteristic shift of the Ta4f spectrum to lower energies by 0.65 eV is observed, which causes the effective charge of tantalum cations +(5–δ). It is shown that the NEXAFS Cu2p spectra of oxide ceramics, according to the main characteristics of the spectrum, represent a superposition of the spectra of Cu(I) and Cu(II) cations. Based on the analysis of the relative intensity of the peaks in the XPS spectrum of Cu2p, the quantitative ratio of Cu(I)/Cu(II) cations in pyrochlore is 1.06. The NEXAFS Ni2p spectrum of ceramics coincides with the spectrum of NiO according to the main characteristics of the spectrum. XPS studies indicate the state of Ni(III). According to the nature of the Co2p spectrum, cobalt ions are in the state of Co(II,III).
Keywords
керамика пирохлор рентгеновская спектроскопия переходные элементы зарядовое состояние
Date of publication
21.12.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Hiroi Z., Yamaura J.-I., Yonezawa S., Harimaп H. // Physica (C). 2007. Vol. 460–462. P. 20. doi 10.1016/ j.physc.2007.03.023
  2. 2. Giampaoli G., Siritanon T., Day B., Subramanian M.A. // Prog. Solid State Chem. 2018. Vol.50, P. 16. doi 10.1016/ j.progsolidstchem.2018.06.001
  3. 3. Du H., Yao X. // J. Mater. Sci. Mater. Electron. 2004. Vol. 15. P. 613. doi 10.1023/B:JMSE.0000036041.84889.b2
  4. 4. Murugesan S., Huda M.N., Yan Y., Al-Jassim M.M., Subramanian V. // J. Phys. Chem. (C). 2010. Vol. 114. P. 10598. doi 10.1021/j.p906252r
  5. 5. Lufaso M.W., Vanderah T.A., Pazos I.M., Pazos Il.M., Levin I., Roth R.S., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3900. doi 10.1016/ j.jssc.2006.08.036
  6. 6. Vanderah T.A., Lufaso M.W., Adler A.U., Levin I., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3467. doi 10.1016/j.jssc.2006.07.014
  7. 7. Levin I., Amos T.G., Nino J.C., Vanderah T.A., Randall C.A., Lanagan M.T. // J. Solid State Chem. 2002. Vol. 168. P. 69. doi 10.1006/jssc.2002.9681
  8. 8. Nguyen H.B., Noren L., Liu Y., Withers R., Wei X., Elcombe M.M. // J. Solid State Chem. 2007. Vol. 180. P. 2558. doi 10.1016/j.jssc.2007.07.003
  9. 9. Vanderah T.A., Siegrist T., Lufaso M.W., Yeager M.C., Roth R.S., Nino J.C., Yates S. // Eur. J. Inorg. Chem. 2006. P. 4908. doi 10.1002/ejic.200600661
  10. 10. Zhuk N.A., Sekushin N.А., Krzhizhanovskaya M.G., Kharton V.V. // Solid State Ionics. 2022. Vol. 377. P. 115868. doi 10.1016/j.ssi.2022.115868
  11. 11. Zhuk N.A., Sekushin N.A., Semenov V.G., Fedorova A.V., Selyutin A.A., Krzhizhanovskaya M.G., Lutoev V.P., Makeev B.A., Kharton V.V., Sivkov D.N., Shpynova A.D. // J. Alloys Compd. 2022. Vol. 903. P. 163928. doi 10.1016/ j.jallcom.2022.163928
  12. 12. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol.15, P. 55. doi 10.1016/0079-6786(83)90001-8
  13. 13. Kamba S., Porokhonskyy V., Pashkin A., Bovtun V., Petzelt J., Nino J.C., Trolier-McKinstry S., Lanagan M.T., Randall C.A. // Phys. Rev. (B). 2002. Vol. 66. P. 054106. doi 10.1103/PhysRevB.66.054106
  14. 14. Valant M. // J. Am. Ceram. Soc. 2009. Vol. 92. P. 955. doi 10.1111/j.1551-2916.2009. 02984.x
  15. 15. Rylchenko E.P., Makeev B.A., Sivkov D.V., Korolev R.I., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 486. doi 10.22226/2410-3535-2022-4-486-492
  16. 16. Parshukova K.N., Sekushin N.A., Makeev B.A, Krzhizhanovskaya M.G., Koroleva A.V., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 469. doi 10.22226/2410-3535-20224-469-474
  17. 17. Akselrud L.G., Grin Y.N., Zavalii P.Y., Pecharsky V.K., Fundamenskii V.S. // Thes. Rep. XII Eur. Crystallogr. Meet. 1989. P. 155.
  18. 18. Zhuk N.A., Krzhizhanovskaya M.G., Koroleva A.V., Koroleva A.V., Nekipelov S.V., Kharton V.V., Seku shin N.A. // Inorg. Chem. 2021. Vol. 60. P. 4924. doi 10.1021/ acs.inorgchem.1c00007
  19. 19. Zhuk N.A., Krzhizhanovskaya M.G., Sekushin N.A., Sivkov D.V., Abdurakhmanov I.E. // J. Mater. Res. Technol. 2023. Vol. 22. P. 1791. doi 10.1016/j.jmrt.2022.12.059
  20. 20. Shannon R.D. // Acta Crystallogr. (А). 1976. Vol. 32. P. 751. doi 10.1107/S0567739476001551
  21. 21. Hassel M., Freund H.-J. // Surface Science Spectra. 1996. Vol. 4. P. 273. doi 10.1116/1.1247797
  22. 22. Regan T.J., Ohldag H., Stamm C., Nolting F., Lüning J., Stöhr J., White R.L. // Phys. Rev. (B). 2001. Vol. 64. P. 214422. doi 10.1103/PhysRevB.64.214422
  23. 23. Mansour A.N., Melendres C.A. // Surface Science Spectra. 1994. Vol. 3. P. 263. doi 10.1116/1.1247755
  24. 24. Preda I., Abbate M., Gutiérrez A., Palacín S., Vollmer A., Soriano L. // J. Electron Spectrosc. 2007. Vol. 156–158. P. 111. doi 10.1016/j.elspec.2006.11.030
  25. 25. Barreca D., Gasparotto A., Tondello E. // Surface Science Spectra 2007. Vol. 14. P. 41. doi 10.1116/11.20080701
  26. 26. Grioni M., van Acker J.F., Czyžyk M.T., Fuggle J.C. // Phys. Rev. (B). 1992. Vol. 45. P. 3309. https:// doi.org/10.1103/physrevb.45.3309
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library