RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Migration Properties and Structure of Phosphate Glasses Containing Alkali Metal Sulfates

PII
S0044460X25010074-1
DOI
10.31857/S0044460X25010074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 1-2
Pages
65-78
Abstract
The paper investigates a set of physico-chemical properties of glasses of the M2O–MPO3, M2SO4–MPO3 (M = Li, Na) systems and glasses of the same systems in which one alkali metal was replaced by another. All compositions were obtained using mortar technology in the manufacture of the initial charge. It was found that almost all the properties of the studied glasses differ slightly in their characteristics from the properties of glasses of similar compositions obtained using solid starting components. It is shown that the electrical properties of pure phosphate and phosphate-sulfate glasses with a commensurate volume concentration of the main current carriers, alkaline cations, are close, i. e. the presence of sulfate ions in mixed glass increases the electrical parameters insignificantly. The equivalent substitution of lithium cations for sodium cations in phosphate and phosphate-sulfate glasses is accompanied by a polychelic effect – a nonlinear change in electrical parameters, and in the phosphate-sulfate system (with a close volume concentration of current carrier ions) this effect is more pronounced.
Keywords
фосфатные стекла фосфатно-сульфатные стекла структура электрические свойства полищелочной эффект
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Минько Н.И., Биналиев И.М. // Стекло и керам. 2012. Т. 85. № 11. С. 3.
  2. 2. Вайсман Я.И., Кетов А.А., Кетов П.А. // Физ. и хим. стекла. 2015. Т. 41. № 2. С. 214; Vaisman Y., Ketov A., Ketov P. // Glass Phys. Chem. 2015. Vol. 41. N 2. P. 157. doi 10.1134/S1087659615020133
  3. 3. Мартынов К.В., Захарова Е.В. // Радиоакт. отх. 2023. № 2(23). С. 63. doi 1025283/2587-9707-2023-2-63-81
  4. 4. Sci Glass: Database and Information System. Version 9.0. Premium Edition. Newton: ITC, 2018. http//www.sciglass.info
  5. 5. Зарецкая Г.Н. // Совр. наук. техн. 2007. № 6. С. 51.
  6. 6. Бобкова Н.М., Трусова Е.Е. // Стекло и керамика. 2017. Т. 90. № 5. С. 7.
  7. 7. Воронцов Б.С., Москвин В.В., Баитов Ю.В. // Компьютерное моделирование физико-химических свойств стекол и расплавов. Тр. Х Росс. Сем. Курган, 2010. С. 38.
  8. 8. Сандитов Д.С., Бадмаев С.С. // Неорг. матер. 2019. Т. 55. № 1. С. 94; Sanditov D.S., Badmaev S.S. // Inorg. Mater. 2019. Vol. 55. P. 1046. doi 10.1134/S0020168519100121
  9. 9. Жабрев В.А., Свиридов С.И. // Физ. и хим. стекла. 2003. Т. 29. № 2. С. 210; Zhabrev V.A., Sviridov S.I. // Glass Phys. Chem. 2003. Vol. 29. P. 140. doi 10.1023/A:1023403024610
  10. 10. Пронкин А.А., Соколов И.А., Нараев В.Н., Лосева М.Н. // Физ. и хим. стекла. 1996. Т. 22. № 6. С. 728.
  11. 11. Соколов И.А., Ильин А.А., Устинов Ю.Н., Валова Н.А., Пронкин А.А. // Физ. и хим. стекла. 2003. Т. 29. № 3. С. 421; Sokolov I.A., Il’in A.A., Ustinov Yu.N., Valova N.A., Pronkin A.A. // Glass Phys. Chem. 2003. Vol. 29. P. 548. doi 10.1023/B:GPAC.0000007930.11101
  12. 12. Свиридов С.И., Тюрнина З.Г., Тюрнина Н.Г. // Физ. и хим. стекла. 2020. T. 46. № 6. С. 553; Sviridov S.I., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2020. Vol. 46. P. 526. doi 10.1134/S1087659620060267
  13. 13. Ganduli M., Rao K.J. // J. Non-Cryst. Sol. 1999. Vol. 243. P. 251.
  14. 14. Архипов В.Г., Иванова Л.В., Мамошин В.Л. // Ж. прикл. спектр. 1986. Т. 45. № 3. С. 460.
  15. 15. Непомилуев А.М., Плетнев Р.Н., Лапина О.Б., Козлова С.Г., Бамбуров В.Г. // Физ. и хим. стекла. 2002. Т. 28. № 1. С. 3; Nepomiluev A.M., Pletnev R.N., Lapina O.B., Kozlova S.G., Bamburov V.G. // Glass Phys. Chem. 2002. Vol. 28. N 1. P. 1. doi 10.1023/A:1014295827303
  16. 16. Орлова В.А., Козлов П.В., Джевелло К.А., Балакина В.А., Беланова Е.А., Галузин Д.Д., Ремизов М.Б. // Неорг. матер. 2019. Т. 55. № 8. С. 890; Orlova V.A., Kozlov P.V., Dzhevello K.A., Balakina V.A., Belanova Ye.A., Galuzin D.D., Remizov M.B. // Inorg. Mater. 2019. Vol. 55. P. 838. doi 10.1134/S0020168519080119
  17. 17. Колесова В.А., Игнатьев И.С., Калинина Н.Е. // Физ. и хим. стекла. 1976. Т. 2. № 5. С. 400.
  18. 18. Соколов И.А., Валова Н.А., Тарлаков Ю.П., Пронкин А.А. // Физ. и хим. стекла. 2003. Т. 29. № 6. С. 760; Sokolov I.A., Il’in A.A., Ustinov Yu.N., Valova N.A., Pronkin A.A. // Glass Phys. Chem. 2003. Vol. 29. P. 548. doi 10.1023/B:GPAC.0000007930.11101
  19. 19. Соколов И.А. Стеклообразные твердые электролиты. Структура и природа проводимости. СПб: Политехн. унив., 2010. С. 392.
  20. 20. Chopinet M.H., Massol I.I., Barton I.L. // Glastechn. Ber. 1983. Vol. 53. N 1. P. 65.
  21. 21. Добош А.Ю., Соколов И.А., Химич Н.Н. // Электрохимия. 2024. Т. 60. № 6. С. 415; Dobosh A., Sokolov I., Khimich N. // Electrochemistry. 2024. Vol. 60. N 6. P. 415. doi 10.1134/S1023193524700071
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library