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ВВЕДЕНИЕ

Одним из важных гетероцепных классов высоко
молекулярных соединений являются полимочевины [1]. 
Высокая механическая [2], ударная прочность [3], эластич-
ность [4], термостойкость [5], стойкость как к полярным, 
так и неполярным растворителям [6] обуславливает их 
широкое применение в самых различных отраслях про-
мышленности. Возможность получения из полимочевин 
изделий, способных к самовосстановлению (живых) [7], 
расширяет их круг использования.

Распространенным методом получения полимочевин 
является взаимодействие диизоцианатов с бисамина-
ми (схема 1) [1, 8].

Взаимодействие изоцианатов с аминами про-
текает с большими скоростями [9]. Реакция со-
провождается резким повышением температуры. 
Поэтому при получении полимочевин этим методом 
необходимо использовать технику реакционного 
формования. Кроме того, изоцианаты относятся к 
высокотоксичным соединениям [10]. Эти недостатки 
данного способа привели к необходимости поиска 
неизоцианатных методов получения полимочевин 
[11–13]. Одним из важных методов получения 
полимочевин безизоцианатным методом является 
карбаматный путь. Сущность подхода заключается 
в первоначальном получении взаимодействием ди-
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аминов с алкиловыми эфирами угольной кислоты 
(как правило, с диметилкарбонатом) бискарбаматов 
[14, 15] (схема 2).

Механизм этой стадии подробно рассмотрен в 
работах [16, 17]. Вторая стадия заключается в реак-
ции бискарбаматов с диаминами [18, 19] (схема 3). 

Реакции нуклеофильного замещения алкоксиль-
ных групп в карбаматах катализируются едкими 
щелочами [20], алкоголятами [21], кислотами Льюи-
са [22]. До настоящего времени отсутствуют данные 
по квантово-химическому изучению этих реакций. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Нами квантово-химическими гибридными ме-
тодами функционала плотности (B3LYP и М06) 
рассмотрена модельная некаталитическая и катализи-
руемая ацетатом цинка и метилатом натрия реакция 
N,O-диметикарбамата с метиламином, приводящая 
к N,N1-диметилмочевине (схема 4).

Взаимодействие N,O-диметикарбамата с метил
амином на первой стадии приводит к образованию 
предреакционного интермедиата (IM1), который 
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является комплексом с водородной связью. Интерме-
диат (IM1) через синхронное переходное состояние 
(TS1) превращается в послереакционный комплекс 
(IM2), представляющий комплекс с водородной 
связью N,N1-диметилмочевины с метанолом. По-
следний распадается с образованием молекул N,N1-
диметилмочевины и метанола (схема 5).

На рис. 1 приведены шаростержневые модели 
интермедиатов и переходного состояния рассмат
риваемого превращения.

В табл. 1 приведены термодинамические пара-
метры элементарных стадий данного превращения. 
Как следует из таблицы, оба использованных метода 
приводят к сходным изменениям термодинамиче-

Таблица 1. Свободные энергии, энтальпии и энтропии элементарных стадий реакции N,O-диметилкарбамата с метил
амином с образованием N,N1-диметилмочевины и метанола в газовой фазе при 298 K.

Стадия
M06/6-311++G(df, p) B3LYP/6-311++G(df, p)

ΔG,  
кДж/моль

ΔН,  
кДж/моль

ΔS,  
Дж/(K·моль)

ΔG,  
кДж/моль

ΔН,  
кДж/моль

ΔS,  
Дж/(K·моль)

I + II → IM1 23.8 –18.2 –140.9 25.3 –7.9 –111.3
IM1 → TS1 202.4 189.9 –41.9 208.9 187.2 –72.8
TS1 → IM2 –201.5 –189.0 42.0 –206.7 –189.4 58.1

IM2 → III + IV –17.9 23.7 139.6 5.6 16.3 120.6

Рис. 1. Шаростержневые модели интермедиатов IM1, IM2 и переходного состояния TS1 в реакции N,O-диметикарбамата 
с метиламином. Данные расчета M06/6-311++G(df, p).

	 IM1	 TS1	 IM2

Таблица 2. Свободные энергии (ΔG≠), энтальпии (ΔН≠), энтропии (ΔS≠) активации, cвободные энергии (ΔG), энталь-
пии (ΔН) и энтропии (ΔS) реакций N,O-диметилкарбамата с метиламином с образованием N,N1-диметилмочевины и 
метанола в газовой фазе при 298 K.

Параметр M06/6-311++G(df, p) B3LYP/6-311++G(df, p)
ΔG≠, кДж/моль 226.2 234.2
ΔН≠, кДж/моль 171.7 179.3

ΔS≠, Дж/(K·моль) –182.8 –184.1
ΔG, кДж/моль 6.8 7.8
ΔН, кДж/моль 6.4 6.2

ΔS, Дж/(K·моль) –1.2 –5.4
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ских параметров. Образование интермедиата IM1 
протекает экзотермично. Однако этот процесс со-
провождается потерей трех поступательных и трех 
вращательных степеней свободы движения. Это 
приводит к большой отрицательной величине энтро-
пии, что обуславливает положительную величину 
свободной энергии образования интермедиата IM1. 
Распад интермедиата IM2 протекает эндотермично, 
но уже сопровождается ростом энтропии. В табл. 2 
приведены термодинамические параметры активации 
и реакции рассматриваемого процесса.

Оба использованных квантово-химических под-
хода дают близкие значения термодинамических 
параметров реакции. Величина константы скорости 
реакции второго порядка взаимодействия N,O-ди-
метилкарбамата с метиламином, вычисленная с 
использованием активационных параметров, полу-
ченных методом М06 при 298 K составляет величину 
2.25·10–40, а при 423 K – 1.77·10–31 л/(моль·с). Эти 
данные указывают на крайне медленное протекание 
некаталитической реакции.

В дальнейшем была рассмотрена катализируемая 
ацетатом цинка реакция N,O-диметилкарбамата с 
метиламином. Ацетат цинка, как кислота Льюиса, 
используется в качестве катализатора в большом 
количестве реакций [23]. Катализируемая реакция 
представлена на схеме 6.

Катализируемая реакция на первой стадии приводит 
к образованию тройного предреакционного комплекса 
IM3, который через переходное состояние TS2 пере-
ходит в послереакционный комплекс IM4. Последний 
распадается на N,N1-диметилмочевину III, метанол 
IV и ацетат цинка V. В предреакционном комплексе 
IM3 происходит смещение электронной плотности с 
карбонильного атома кислорода карбамата I на атом 
цинка, что должно было облегчать нуклеофильную 
атаку атомом азота метиламина II на карбонильный 
атом углерода карбамата I. На рис. 2 приведены шаро
стержневые структуры пред- и послереакционных 
комплексов и переходного состояния. В табл. 3 при-
ведены термодинамические параметры отдельных 
стадий катализируемой ацетатом цинка реакции.
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Оба использованных квантово-химических метода 
приводят к сходным тенденциям изменений термодина-
мических параметров. Образование предреакционного 
комплекса протекает с большим экзотермическим 
эффектом. Хотя эта стадия характеризуется сильным 
понижением энтропии, тем не менее, свободная 

энергия ее отрицательна. Распад послереакционного 
комплекса сопровождается большим возрастанием 
энтропии. Но этот процесс эндотермичен, что при-
водит к положительной величине свободной энергии. 
В табл. 4 приведены термодинамические параметры 
катализируемой ацетатом цинка реакции.

Рис. 2. Шаростержневые модели интермедиатов IM3, IM4 и переходного состояния TS2 в катализируемой ацетатом цинка 
реакции N,O-диметикарбамата с метиламином. Данные расчета M06/6-311++G(df, p).

	 IM3	 TS2

IM4

Таблица 3. Свободные энергии (ΔG, кДж/моль), энтальпии (ΔН, кДж/моль) и энтропии (ΔS, Дж/K·моль) элементарных 
стадий катализируемой ацетатом цинка реакции N,O-диметилкарбамата с метиламином с образованием N,N1-диме-
тилмочевины в газовой фазе при 298 K. 

Стадия
M06/6-311++G(df, p) B3LYP/6-311++G(df, p)

ΔG, 
кДж/моль

ΔН, 
кДж/моль

ΔS, 
Дж/(K·моль)

ΔG, 
кДж/моль

ΔН, 
кДж/моль

ΔS, 
Дж/(K·моль)

I + II + V → IM3 –25.5 –101.7 –255.6 –4.2 –72.6 –229.4
IM3 → TS2 223.1 196.5 –89.4 229.0 204.8 –81.3
TS2 → IM4 –249.5 –236.2 44.5 –244.1 –235.3 29.5

IM4 → III + IV + V 58.7 147.9 299.4 27.0 109.2 275.9
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В катализируемой ацетатом цинка реакции про-
исходит резкое снижение энтальпии активации, но 
эта реакция характеризуется существенно меньшей 
энтропии активации. Как следует из табл. 4, вклад 
энтропийного члена в свободную энергию активации 
большой. Вычисленная с использованием данных 
табл. 4 константа скорости катализируемой ацета-
том цинка реакции равна при 298 K 9.0·10–22, а при 
423 K – 1.0·10–16 л/(моль·с). Таким образом, ацетат 
цинка позволяет ускорить реакцию. Тем не менее, 
константы скорости реакции остаются малыми.

На следующем этапе мы изучили возможность 
катализа реакции N,O-диметилкарбамата с метил
амином основанием – метилатом натрия. Это взаимо
действие протекает в соответствии со схемой 7.

В ходе реакции образуется тройной пред
реакционный комплекс IM5. Метилат натрия в нем 

проявляет бифильные кислотно-основные свойства. 
Атом натрия за счет своих вакантных атомных 
орбиталей взаимодействует как с неподеленной 
парой электронов атома азота метиламина, так и с 
неподеленной парой электронов атома кислорода 
метокси-группы карбамата. Атом кислорода мети-
лата натрия координируется с атомами водорода при 
атомах азота метиламина и карбамата. Комплекс 
IM5 через синхронное переходное состояние TS3 
переходит в послереакционный комплекс IM6, 
который распадается на N,N1-диметилмочевину, 
метанол и метилат натрия. На рис. 3 приведены 
шаростержневые модели пред- и послереакционных 
комплексов IM5, IM6 и переходного состояния TS3. 
В табл. 5 приведены термодинамические параметры 
элементарных стадий катализируемой метилатом 
натрия реакции.

Таблица 4. Свободные энергии (ΔG≠), энтальпии (ΔН≠) и энтропии (ΔS≠) активации катализируемой ацетатом цинка 
реакции N,O-диметилкарбамата с метиламином с образованием N,N1-диметилмочевины в газовой фазе при 298 K. 

Параметр M06/6-311++G(df, p) B3LYP/6-311++G(df, p)
ΔG≠, кДж/моль 197.6 224.8
ΔН≠, кДж/моль 94.8 132.2

ΔS≠, Дж/(K·моль) –345.0 –310.7
–TΔS≠, кДж/моль 102.8 92.6
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Рис. 3. Шаростержневые модели интермедиатов IM5, IM6 и переходного состояния TS3 в катализируемой метилатом 
натрия реакции N,O-диметикарбамата с метиламином. Данные расчета M06/6-311++G(df, p).

	 IM5	 TS3

IM6

Таблица 5. Свободные энергии, энтальпии и энтропии элементарных стадий катализируемой метилатом натрия 
реакции N,O-диметилкарбамата с метиламином с образованием N,N1-диметилмочевины в газовой фазе при 298 K. 

Реакция
M06/6-311++G(df, p) B3LYP/6-311++G(df, p)

ΔG, 
кДж/моль

ΔН, 
кДж/моль

ΔS, 
Дж/(K·моль)

ΔG, 
кДж/моль

ΔН, 
кДж/моль

ΔS, 
Дж/(K·моль)

I + II + VI → IM5 –67.2 –154.2 –292.1 –61.4 –146.4 –285.3
IM5 → TS3 131.9 111.9 –67.0 154.4 134.6 –66.4
TS3 → IM6 –154.8 –126.3 95.8 –178.4 –152.9 85.5

IM6 → II + IV + VI 97.0 175.1 262.2 93.1 170.8 260.9

Таблица 6. Свободные энергии (ΔG≠), энтальпии (ΔН≠) и энтропии (ΔS≠) активации катализируемой метилатом натрия 
реакции N,O-диметилкарбамата с метиламином с образованием N,N1-диметилмочевины в газовой фазе при 298 K.

Параметр M06/6-311++G(df, p) B3LYP/6-311++G(df, p)
ΔG≠, кДж/моль 64.7 93.0
ΔН≠, кДж/моль –42.3 –11.8

ΔS≠, Дж/(K·моль) –359.1 –351.7
–TΔS≠, кДж/моль 107.0 104.8
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Оба использованные квантово-химические 
подходы приводят к сходным изменениям термо-
динамических параметров. Образование предреак-
ционного комплекса IM5 характеризуется большой 
отрицательной величиной энтропии, но эта стадия 
сильно экзотермична. Распад послереакционного 
комплекса IM6, напротив, сильно эндотермичен. 
Но энтропия этой стадии большая положительная 
величина. Свободные энергии и стадии образования 
комплекса IM5, и распада комплекса IM6 контро-
лируются энтальпийными эффектами. В табл. 6 
приведены термодинамические параметры акти-
вации катализируемой метилатом натрия реакции 
N,O-диметилкарбамата с метиламином.

Катализируемая метилатом натрия реакция 
протекает с отрицательной величиной энтальпии 
активации. Однако реакция характеризуется боль-
шой отрицательной величиной энтропии активации. 
Свободная энергия активации в этом процессе кон-
тролируется энтропийным эффектом. Вычисленная 
с использованием данных, полученных расчетом 
методом М06, константа скорости реакции, катали-
зируемой метилатом натрия, составляет при 298 K 
7.6·103, а при 423 K – 1.6 л/(моль·с). Таким образом, 
метилат натрия является эффективным катализато-
ром реакций карбаматов с аминами. Полученные 
результаты согласуется с экспериментальными 
данными. На легко протекающий аминолиз карба-
матов в присутствии метилата натрия указывается 
в работе [24]. Отмечается, что N-бутил-О-фенил-
карбамат не реагирует с анилином в отсутствии 
катализаторов, но реакция легко протекает при 
введении оснований [25]. Аминирование сложных 
эфиров в присутствии метилата натрия протекает с 
высокими выходами в мягких условиях [26]. 

ВЫВОДЫ

Проведенное исследование показывает, что не-
каталитическая реакция характеризуется большим 
свободноэнергетическим активационным барьером. 
Константа скорости, вычисленная с использова-
нием активационных параметров, полученных 
методом М06 при 298 K для некаталитической 
реакции, составляет равна 2.25·10–40, а при 423 K – 
1.77·10–31 л/(моль·с). Катализ ацетатом цинка не 
приводит к существенному снижению активацион-
ного барьера. Константа скорости, катализируемой 

ацетатом цинка реакции при 298 K равна 9.0·10–22, 
а при 423 K – 1.0·10–16 л/(моль·с). Наибольшее 
снижение активационного барьера наблюдается 
при катализе метилатом натрия. И каталитические и 
некаталитическая реакции протекают через согласо-
ванные переходные состояния. Для катализируемой 
метилатом натрия реакции константа скорости при 
298 K равна 7.6·103, а при 423 K – 1.6 л/(моль·с).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Квантово-химические расчеты проводили гибрид-
ными методами функционала плотности B3LYP/6-
311++G(df, p) и M06/6-311++G(df, p) с использова-
нием пакета прикладных программ Gaussian 09 [27]. 
Все расчеты проводились с полной оптимизацией 
геометрий реагентов, пред- и послереакционных 
комплексов, переходных состояний и продуктов. 
Высокая достоверность результатов, полученных 
в результате расчетов методом B3LYP, отмечена в 
работе [28]. Метод M06 рекомендован для расчета 
систем с нековалентными связями, например, водо-
родными связями [29]. Использование двух разных 
функционалов преследовало цель получения более 
достоверных данных.

Переходные состояния имели одну мнимую ча-
стоту. Реагенты, продукты, интермедиаты мнимых 
частот не имели. Истинность переходных состояний 
проверялось спуском с вершины переходного состоя- 
ния в долину реагентов и продуктов.

Энтальпии (энтропии) активации реакций вычис-
ляли как разницу энтальпий полностью оптимизи-
рованных структур переходных состояний и сумм 
энтальпий (энтропий) полностью оптимизированных 
структур реагентов:

	 ΔHакт = ΔHTS – ΣΔHреаг ,

	 ΔSакт = ΔSTS – ΣΔSреаг .

Аналогичным образом вычисляли свободные 
энергии активации. Вычисления констант скоро-
стей реакций проводили в соответствии с термо-
динамическим видом основного уравнения теории 
абсолютных скоростей реакций [30]:

	 k T k T
h

G
RT( ) e

B .
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Non-catalytic and sodium acetate and sodium methoxide catalyzed reactions of N,O-dimethyl carbamate with 
methylamine were studied using quantum-chemical hybrid density functional methods M06 and B3LYP. All 
interactions proceed through concerted cyclic transition states. Non-catalytic and sodium acetate-catalyzed 
reactions are characterized by a large activation free energy barrier. The transformation catalyzed by sodium 
methoxide is characterized by a negative enthalpy of activation and a low free energy of activation.
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