УДК 547.46.052

СИНТЕЗ НОВЫХ ЭФФЕКТИВНЫХ ФЛУОРОФОРОВ ТИЕНО[2,3-*b*]ПИРИДИНОВОГО РЯДА

© 2023 г. А. Ю. Алексеева¹, М. Ю. Иевлев¹, Е. Г. Зиновьева¹, О. В. Ершов¹, А. И. Ершова¹, И. Н. Бардасов^{1,*}

Чувашский государственный университет имени И. Н. Ульянова, Московский пр. 15, Чебоксары, 428015 Россия *e-mail: bardasov.chem@mail.ru

Поступило в редакцию 27 мая 2023 г. После доработки 6 июля 2023 г. Принято к печати 10 июля 2023 г.

Взаимодействием 4-амино-6-арил-2-галогенпиридин-3,5-дикарбонитрилов с этиловым эфиром тиогликолевой кислоты синтезирована серия новых эффективных флуорофоров тиено[2,3-b]пиридинового ряда. Длинноволновые полосы поглощения растворов (ДМСО) полученных соединений находятся на границе УФ и видимой областей спектра (λ_{abs} 375–388 нм) и подвержены неоднозначному влиянию электронных эффектов заместителей, что было объяснено с помощью квантово-химических расчетов. Максимумы испускания, в свою очередь, располагаются в желто-зеленой области (λ_{em} 490–510 нм) и смещаются гипсохромно при наличии электронодонорных групп, несколько увеличивая свою интенсивность (Φ_{em} 37.8–60.6%). Выявлено, что присутствие нитрогруппы вызывает полное тушение фотолюминесценции как растворе, так и в твердом состоянии. Кроме того, положение максимума испускания (λ_{em} 473–505 нм) и его интенсивность (Φ_{em} 3.6–72.7%) сильно зависят от полярности и основных свойств среды, что установлено с использованием эмпирической модели Каталана.

Ключевые слова: тиено[2,3-b]пиридины, флуоресценция, сольватохромизм, нуклеофильное замещение

DOI: 10.31857/S0044460X23080061, **EDN:** IXJBIE

Производные тиено[2,3-*b*]пиридина занимают важное место в химии гетероциклических соединений благодаря своим оптическим свойствам и биологической активности [1]. Среди соединений, содержащих тиено[2,3-*b*]пиридиновый фрагмент, найдены представители, являющиеся ингибиторами переносчика мочевины [2], агонистами фарнезоидного рецептора (FXR) [3], усилителями щелочной фосфатазы для лечения остеопороза [4], положительными аллостерическими модуляторами мускаринового ацетилхолинового рецептора (М₄ PAM) [5], антиагрегантами [6], ингибиторами печеночного глюконеогенеза [7], противораковыми [8–10] и противомикробными агентами [11, 12].

Оптические свойства производных тиено [2,3-*b*]пиридина представлены в литературе единичными публикациями, в то время как среди данных веществ есть соединения, обладающие фотохромными свойствами [13], демонстрирующие эффективную флуоресценцию в растворах [14, 15] и в твердом состоянии [16, 17], а также электролюминесценцию в синей и зеленой областях [18, 19]. Некоторые азокрасители на основе тиено[2,3-*b*]пиридина применяются в качестве дисперсных красителей и показывают хорошую стойкость на полиэфирных волокнах [20].

В настоящей работе нами представлен синтез и спектрально-люминесцентные свойства новых эффективных флуорофоров тиено[2,3-*b*]пиридинового ряда **2**, полученных на основе 4-амино-6-арил-2-галогенпиридин-3,5-дикарбонитрилов **1** [21–23].

Основными способами получения производных 3-аминотиено[2,3-*b*]пиридин-2-карбоновой

Схема 1.

Ar = Ph (a), 2-ClC₆H₄ ($\mathbf{6}$), 2-NO₂C₆H₄ (\mathbf{B}), 4-MeC₆H₄ ($\mathbf{\Gamma}$), 4-MeOC₆H₄ (\mathbf{J}), 4-Me₂NC₆H₄ (\mathbf{e}).

кислоты являются алкилирование пиридин-2-тионов производными моногалогенуксусной кислоты [2, 4, 6–9, 11, 24–27] и взаимодействие 2-галогенникотинонитрилов с производными тиогликолевой кислоты [4, 5, 10, 12, 15, 24, 27]. Вариацией последнего подхода могут являться тандемные реакции, где при действии тиолят-аниона на полицианозамещенные субстраты происходит постадийное формирование пиридинового и тиофенового колец [28, 29]. Таким образом исключается необходимость предварительного синтеза 2-галогенникотинонитрилов. Оба подхода получили широкое распространение и используются в зависимости от доступности исходных соединений.

Синтезированные нами ранее 4-амино-6-арил-2-галогенпиридин-3,5-дикарбонитрилы 1 с донорными заместителями в бензольном кольце проявляют интенсивную флуоресценцию с квантовыми выходами до 92% [23]. С целью получения новых эффективных флуорофоров с фрагментом тиено[2,3-*b*]пиридина нами проведена реакция соединений 1а—е с этиловым эфиром тиогликолевой кислоты, в результате чего были выделены соответствующие этил-3,4-диамино-6-арил-5-цианотиено[2,3-*b*]пиридин-2-карбоксилаты 2а—е с выходами 68–89% (схема 1).

Реакция на первом этапе включает нуклеофильное замещение атома галогена под действием основания и образование промежуточного этил-2-[(4-амино-6-арил-3,5-дицианопиридин-2-ил)тио]ацетата **A**, который затем претерпевает циклизацию Торпа–Циглера с образованием тиофенового кольца.

Синтезированные соединения **2**а-е представляют собой кристаллические вещества белого и светло-желтого цвета, хорошо растворимые в

большинстве органических растворителей. Спектры поглощения соединений 2а-е, зарегистрированные в растворе ДМСО (5×10^{-5} M.), представлены двумя выраженными максимумами в области 272-374 нм и 375-388 нм. При этом достаточно необычным является тот факт, что положение длинноволновой полосы подвержено неоднозначному влиянию электронных эффектов заместителей в бензольном кольце (табл. 1, рис. 1). Для нее наблюдается батохромный сдвиг как в случае соединения 2в с акцепторной нитрогруппой (386 нм), так и в случае соединения 2е с донорной диметиламиногруппой (388 нм). В свою очередь, коротковолновый максимум, напротив, испытывает ожидаемое батохромное смещение в случае наличия донорных заместителей в бензольном кольце и гипсохромное - в присутствии акцепторов. Наиболее сильно этот эффект проявляется в спектре соединения 2е с диметиламиногруппой: обе полосы поглощения находятся в интервале 370-390 нм.

Для изучения природы электронных переходов, а также с целью установления причин неоднозначного эффекта заместителей при арильном фрагменте на положение длинноволновой полосы поглощения, были проведены квантово-химические расчеты. Первоначально, была оптимизирована геометрия молекул 2а—е в основном состоянии в газовой фазе с использованием теории функционала плотности (DFT) и обменно-корреляционного функционала РВЕО в базисе 6-311G(d,p), который дополнялся диффузными функциями для всех атомов, кроме атомов водорода. После чего методом нестационарной теории функционала плотности (TD-DFT) были определены энергии первых ше-

,	1	,		, ,			
No	λ _{abs} , нм	ε×10 ⁴ , л/(моль·см)	λ _{em} , нм ^a	Стоксов сдвиг, см ⁻¹ (нм)	Φ _{em} , % ⁶	$\lambda_{em}(T\Phi)$, нм	$I_{\text{отн}} (\text{T}\Phi)^{\text{B}}$
2a	281, 381	2.47, 1.17	510	6639 (129)	37.8	471	0.635
26	272, 375	2.46, 1.37	503	6786 (128)	45.3	494	0.392
2в	279, 386	2.80, 1.06	_	_	_	_	_
2г	286, 381	2.81, 1.41	505	6445 (124)	46.5	457	0.365
2д	301, 381	2.80, 1.62	497	6126 (116)	56.3	476	0.556
2e	374, 388	2.67, 2.67	490	5365 (102)	60.6	480	1.00

Таблица 1. Спектрально-люминесцентные свойства соединений 2а-е

сти возбуждений, а также соответствующие им силы осциллятора, описывающие вероятность каждого вертикального электронного перехода.

В результате расчетов установлено, что для всех исследуемых соединений первое возбуждение, главным образом, определяется одноэлектронным переходом ВЗМО—НСМО. Причем, для соединений **2**а-в ВЗМО преимущественно локализована на тиено[2,3-*b*]пиридиновой системе, а НСМО – частично на арильном заместителе при пиридиновом цикле (табл. 2). Таким образом, акцепторные свойства нитрогруппы облегчают данный электронный переход, что объясняет экспериментально наблюдаемый батохромный сдвиг полосы поглощения до 386 нм. В свою очередь, для структур **2**г-е наблюдается обратная ситуация:

ВЗМО в значительной степени распределена по сопряженному арильному заместителю, а НСМО более локализована на тиено[2,3-*b*]пиридиновом фрагменте и примыкающей к нему сложноэфирной группе. В связи с этим, электронный переход ВЗМО→НСМО для соединений **2г**—е облегчается с увеличением электронодонорной силы заместителя при фенильном кольце, что также коррелирует с наблюдаемым батохромным сдвигом для соелинения **2e** до 388 нм.

Согласно квантово-химическим расчетам, для соединений 2a, 6, r—e характерно локальное возбуждение сопряженной тиено[2,3-b] пиридиновой системы, которое не сопровождается значительным перераспределением электронной плотности. Следовательно, от данных структур можно ожи-

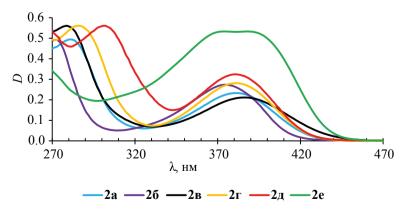


Рис. 1. Спектры поглощения соединений 2а-е.

 $^{^{}a}$ λ_{ex} 370 нм.

⁶ Относительный квантовый выход флуоресценции (Φ_{em}) в растворе ДМСО был определен с использованием раствора хинина в 0.05 М. серной кислоте в качестве стандарта при λ_{ex} 370 нм [30].

^в Относительная интенсивность флуоресценции образцов в твердой фазе (ТФ), λ_{ex} 370 нм.

Таблица 2. Визуализация рассчитанных методом PBE0/6-311G(d,p) граничных молекулярных орбиталей (B3MO, HCMO) для соединений **2a**—e

Nº	ВЗМО	НСМО
2a		
26		
2в		
2г		
2д		
2 e		

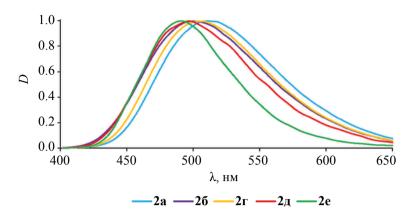


Рис. 2. Нормализованные спектры флуоресценции соединений 2а-е.

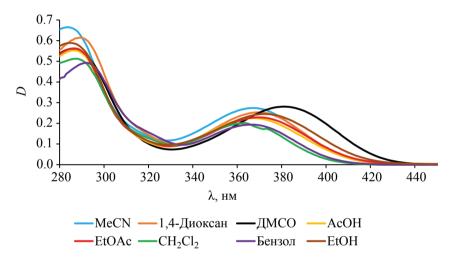


Рис. 3. Спектры поглощения соединения 2г в различных растворителях.

дать высокой вероятности излучательной релаксации и наличия флуоресцентных свойств. Нами проведены исследования фотолюминесценции соединений **2a**—е в растворе ДМСО (5×10⁻⁵ М.). Установлено, что их спектры испускания характеризуются единственным максимумом при 490– 510 нм, при этом наличие донорных заместителей приводит к некоторому ее гипсохромному смещению и увеличению квантового выхода (табл. 1, рис. 2), что также согласуется с проведенными квантово-химическими расчетами. Стоит отметить, что в отличие от исходных соединений **1**, синтезированные тиено[2,3-*b*]пиридины **2a**, **6**, **г**—е демонстрируют интенсивную флуоресценцию растворе даже при отсутствии донорных заместителей в бензольном кольце, причем слабая фотолюминесценция в области 457—494 нм также сохраняется для этих соединений и в кристаллическом состоянии (табл. 1). Впрочем, наличие акцепторного заместителя в структуре 2в приводит к полному тушению испускания как в растворе, так и в твердой фазе, по-видимому, из-за более выраженного переноса заряда в актах фотовозбуждения и релаксации.

Исследование сольватохромных свойств на примере соединения **2г** выявило ожидаемое гипсохромное смещение длинноволнового максимума поглощения при переходе от ДМСО к менее полярным средам (табл. 3, рис. 3). С увеличени-

Растворитель	λ_{abs} , нм $\epsilon \times 10^4$, л/(моль·см)		λ _{em} , нм ^a	Стоксов сдвиг, см-1 (нм)	Фет, %б		
ДМСО	286, 381	2.80, 1.40	505	6445 (124)	46.5		
1,4-Диоксан	289, 369	3.07, 1.27	476	6092 (107)	72.4		
Ацетонитрил	284, 367	3.33, 1.37	490	6840 (123)	48.1		
Дихлорметан	287, 363	2.56, 1.00	479	6671 (116)	57.1		
Этилацетат	286, 369	2.81, 1.14	483	6396 (114)	60.3		
Уксусная к-та	286, 367	2.76, 1.13	486	6672 (119)	3.6		
Бензол	292, 367	2.46, 0.97	473	6106 (106)	72.7		
Тоноп	285 372	2 94 1 23	490	6474 (118)	47.0		

Таблица 3. Оптические свойства соединения 2г в разных растворителях

ем полярности растворителя также наблюдается снижение квантового выхода флуоресценции, а при использовании уксусной кислоты испускание практически пропадает. В свою очередь, максимумы флуоресценции не продемонстрировали удовлетворительной линейной зависимости от полярности растворителя (табл. 3, рис. 4). Поэтому для описания сольватофлуорохромизма нами использована эмпирическая модель Каталана, включающая кроме параметров поляризуемости (SP) и диполяризуемости (SP) среды, также ее кислотные (SA) и основные свойства (SB) [31]. Выведенное методом множественного регрессионного анализа с использованием экспериментальных значений $\lambda_{\rm em}$ (табл. 3) уравнение Каталана (1) показало, что

помимо критериев полярности растворителя (SP и SdP) на энергию испускания соединения $2\mathbf{r}$ значительное влияние оказывает также основность системы (SB).

$$\lambda_{\text{em}} = 429 + 40.6SP + 26.5SdP + 5.0SA + 22.3SB.$$
 (1)

Рассчитанные с помощью уравнения (1) максимумы фотолюминесценции соединения 2Γ в различных растворителях (рис. 5) хорошо согласуются с экспериментальными (R^2 0.9373), что подтверждает корректность используемой модели для объяснения величины батохромного сдвига.

Таким образом, нами были синтезированы новые эффективные флуорофоры тиено[2,3-*b*]-

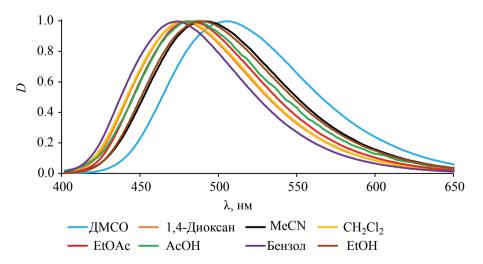
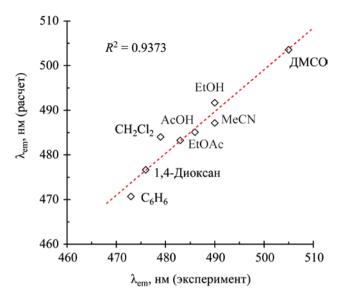



Рис. 4. Нормализованные спектры флуоресценции соединения 2г в различных растворителях.

a λ_{ex} 370 нм.

⁶ Относительный квантовый выход флуоресценции (Φ_{em}) в растворе ДМСО определен с использованием раствора хинина в 0.05 М. серной кислоте в качестве стандарта при λ_{ex} 370 нм [30].

Рис. 5. Сравнение максимумов испускания (λ_{em}) соединения **2**г в различных растворителях, наблюдаемых экспериментально и рассчитанных по уравнению (1).

пиридинового ряда на основе реакции 4-амино-6-арил-2-бромпиридин-3,5-дикарбонитрилов с этиловым эфиром тиогликолевой кислоты, а также проведены исследования их спектрально-люминесцентных свойств в растворе и в кристаллическомсостоянии. Полученныетиено[2,3-*b*]-пиридины продемонстрировали наличие интенсивной флуоресценции с максимумом в диапазоне 490–510 нм, эффективность которой в неполярных средах достигает 73%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Этиловый эфир тиогликолевой кислоты (99%), малононитрил (99%), карбонат калия (XЧ), 1,4-диоксан (XЧ), соляная кислота (XЧ) являются коммерческими продуктами.

ИК спектры зарегистрированы на Фурье-спектрометре ФСМ-2201 (Россия) в тонком слое (суспензия в вазелиновом масле). Спектры ЯМР 1 Н и 13 С зарегистрированы на спектрометрах Bruker DRX-500 (США) и Bruker DRX-400 (США) в ДМСО- d_6 , внутренний стандарт — ТМС. Масс-спектры записаны на приборе Shimadzu GCMS-QP2020 (ионизация ЭУ, 70 эВ) (Япония). Элементный анализ выполнен на CHN-анализато-

ре Thermo Scientific FlashEA 1112 (США). Температуры плавления определены на автоматическом приборе OptiMelt MPA100 (США). Контроль за ходом реакций и чистотой синтезированных соединений осуществлен методом ТСХ на пластинах Sorbfil ПТСХ-АФ-А-УФ, (элюент — EtOAc, проявление УФ облучением, парами иода и термическим разложением). Спектры поглощения сняты на спектрофотометре Cary 60 (США). Спектры флуоресценции сняты на приборе Cary Eclipse (США).

Соединения **1а**—г синтезированы по методике [21], соединения **1**д, **e** синтезированы по методике [23].

Общая методика получения 3,4-диамино-6-арил-5-цианотиено[2,3-*b*]пиридин-2-карбоксилатов 2а—е. Смесь соединения 1 (1 ммоль), этилового эфира тиогликолевой кислоты (2 ммоль) и карбоната калия (1 ммоль) кипятили в 5 мл смеси 1,4-диоксан—вода (2:1, по объему) в течение 1 ч. После окончания реакции (ТСХ) смесь нейтрализовали соляной кислотой. Осадок отфильтровывали и перекристаллизовывали из 1,4-диоксана.

Этил-3,4-диамино-6-фенил-5-цианотиено[2,3-*b*]пиридин-2-карбоксилат (2а). Выход 78%, т. пл. 237–238°С (разл.). ИК спектр, v, см⁻¹: 1669 ср (С=О), 2205 ср (С=N), 3381 ш (NH₂). Спектр ЯМР ¹H, δ , м. д.: 1.29 т (3H, ОСН₂СН₃, ³ J_{HH} 7.1 Гц), 4.27 к (2H, ОСН₂СН₃, ³ J_{HH} 7.1 Гц), 7.24 с (2H, NH₂), 7.51–7.54 м (5H, С₆H₅, NH₂), 7.76–7.79 м (2H, С₆H₅). Спектр ЯМР ¹³С, δ _С, м. д.: 15.02 (ОСН₂СН₃), 60.73(ОСН₂СН₃), 87.07, 93.56 (С⁵, С²), 109.93 (С^{3а}), 117.61 (С=N), 128.87 (С₆H₅), 129.37 (С₆H₅), 130.54, 138.26, 150.11, 154.85 (С^{1а}, С³, С₆H₅), 161.99, 164.56, 164.97 (С=О, С⁴, С⁶). Массспектр, m/z ($I_{\text{отн}}$, %): 338 (100) [M]⁺. Найдено, %: С 60.48; H 4.13; N 16.48. С₁₇H₁₄N₄O₂S. Вычислено, %: С 60.34; H 4.17; N 16.56.

Этил-3,4-диамино-6-(2-хлорфенил)-5-цианотиено[2,3-b]пиридин-2-карбоксилат (26). Выход 80%, т. пл. 227–228°С (разл.). ИК спектр, v, см $^{-1}$: 1643 с (C=O), 2216 ср (С=N), 3275 ср, 3309 ср, 3362 ср (NH $_2$), Спектр ЯМР 1 Н, δ , м. д.: 1.29 т (3H, ОСН $_2$ СН $_3$, $^3J_{\rm HH}$ 7.1 Гц), 4.27 к (2H, ОСН $_2$ СН $_3$, $^3J_{\rm HH}$ 7.1 Гц), 7.25 с (2H, NH $_2$), 7.47–7.56 м (3H, С $_6$ Н $_4$), 7.61 с (2H, NH $_2$), 7.63 д (1H, С $_6$ Н $_4$, $^3J_{\rm HH}$ 2.2 Гц). Спектр ЯМР 13 С, δ _С, м. д.: 14.43 (ОСН $_2$ СН $_3$), 60.22

 $(O\underline{C}H_2CH_3)$, 88.89, 93.28 (C⁵, C²), 109.90 (C^{3a}), 115.88 (C \equiv N), 127.31 (C₆H₄), 129.49 (C₆H₄), 130.65 (C₆H₄), 131.06 (C₆H₄), 131.44, 137.20, 149.51, 153.42 (C^{1a}, C³, C₆H₄), 160.43 (C=O), 163.65 (C⁴), 164.36 (C⁶). Масс-спектр, m/z ($I_{\text{отн}}$, %): 374 (39) [M]⁺, 372 (100) [M]⁺. Найдено, %: C 54.90; H 3.47; N 14.95. C₁₇H₁₃CIN₄O₂S. Вычислено, %: C 54.77; H 3.51; N 15.03.

Этил-3,4-диамино-6-(3-нитрофенил)-5цианотиено[2,3-b]пиридин-2-карбоксилат (2в). Выход 68%, т. пл. 260-261°C (разл.). ИК спектр, v, cm⁻¹: 1640 cp (C=O), 2205 cp (C≡N), 3247 III, 3364 ш (NH₂). Спектр ЯМР ¹Н), δ, м. д.: 1.29 т (3H, OCH_2CH_3 , ${}^3J_{HH}$ 7.1 Гц), 4.27 к (2H, OCH_2CH_3 , ${}^3J_{HH}$ 7.1 Гц), 7.26 с (2H, NH₂), 7.65 с (2H, NH₂), 7.84 т (1H, C_6H_4 , $^3J_{HH}$ 8.0 Гц), 8.27 д (1H, C_6H_4 , $^3J_{HH}$ 7.9 Гц), 8.39 д. д (1H, C_6H_4 , $^3J_{HH}$ 7.8, $^4J_{HH}$ 2.0 Гц), 8.59 т (1H, C_6H_4 , ${}^4J_{\rm HH}$ 2.0 Γ ц). Спектр ЯМР 13 С, $\delta_{\rm C}$, м. д.: 15.00 (OCH₂CH₃), 60.81 (OCH₂CH₃), 87.23, 94.03 (C^5 , C^2), 110.37 (C^{3a}), 117.32 ($C \equiv N$), 124.09 (C_6H_4) , 125.20 (C_6H_4) , 130.66 (C_6H_4) , 135.82 (C_6H_4) , 139.58, 148.22, 149.97, 154.85 (C^{1a} C^{3} , $C_{6}H_{4}$), 159.47, 164.42, 164.89 (C=O, C⁴, C⁶). Macc-спектр, m/z ($I_{\text{отн}}$, %): 383 (100) [M]⁺. Найдено, %: С 54.90; Н 3.47; N 14.95. С₁₇Н₁₃СІN₄О₂S. Вычислено, %: С 54.77; H 3.51; N 15.03.

Этил-3,4-диамино-6-(п-толил)-5-цианотиено[2,3-b]пиридин-2-карбоксилат (2г). Выход 82%, т. пл. 260–261°С (разл.). ИК спектр, v, см⁻¹: 1645 c (C=O), 2223 cp (C=N), 3240 cp, 3349 cp (NH₂).Спектр ЯМР 1 Н, δ , м. д.: 1.29 т (3H, OCH₂CH₃, ${}^{3}J_{HH}$ 7.1 Гц), 2.39 с (3H, CH₃), 4.27 к (2H, OC<u>H</u>₂CH₃, ${}^{3}J_{HH}$ 7.1 Гц), 7.23 с (2H, NH₂), 7.33 д (2H, C_6H_4 , $^3J_{HH}$ 8.0 Гц), 7.49 с (2H, NH₂), 7.69 д (2H, C₆H₄, ${}^3J_{\rm HH}$ 8.1 Γ ц). Спектр ЯМР ¹³С, δ С, м. д.: 15.02 (ОСН₂СН₃), 21.57 (4-H₃C-C₆H₄), 60.70 (OCH₂CH₃), 86.86, 93.47 (C^5, C^2) , 109.80 (C^{3a}) , 117.71 $(C \equiv N)$, 129.32 (C_6H_4) , $129.42 (C_6H_4), 135.43, 140.34, 150.12, 154.88 (C^{1a})$ C^3 , C_6H_4), 161.88, 164.60, 164.97 (C=O, C^4 , C^6). Масс-спектр, m/z ($I_{\text{отн}}$, %): 352 (100) [M]⁺. Найдено, %: С 61.50; Н 4.51; N 15.81. С₁₈Н₁₆N₄О₂S. Вычислено, %: С 61.35; Н 4.58; N 15.90.

Этил-3,4-диамино-6-(4-метоксифенил)-5-цианотиено[2,3-b]пиридин-2-карбоксилат (2д). Выход 85%, т. пл. 257–258°С (разл.). ИК спектр, v, см $^{-1}$: 1646 ср (C=O), 2195 ср, 2202 ср (C=N), 3301 ш, 3353 ш (NH₂). Спектр ЯМР 1 Н, δ , м. д.: 1.27 т (3H, OCH₂CH₃, $^{3}J_{\rm HH}$ 7.8 Γ ц), 3.25 с (3H, OCH₃),

4.26 к (2H, OC \underline{H}_2 CH $_3$, $^3J_{HH}$ 7.8 Ги), 7.06 д (2H, C $_6$ H $_4$, $^3J_{HH}$ 8.3 Ги), 7.15 с (2H, NH $_2$), 7.37 с (2H, NH $_2$), 7.77 д (2H, C $_6$ H $_4$, $^3J_{HH}$ 8.3 Ги). Спектр ЯМР 13 С, $\delta_{\rm C}$, м. д.: 15.01 (OCH $_2$ С $_4$), 55.95 (4-H $_3$ СО-С $_6$ H $_4$), 60.67 (OС $_4$ СС $_4$), 86.49, 93.31 (С $_5$, С $_4$), 109.58 (С $_4$ 3), 114.24 (С $_6$ H $_4$), 117.89 (С $_4$ 8), 131.00 (С $_6$ H $_4$), 130.45, 150.15, 154.93, (С $_4$ 9, С $_4$ 9, С $_4$ 9, 161.31, 161.39, 164.63, 164.98 (С $_6$ H $_4$, С $_4$ 9, С $_4$ 9, С $_4$ 9, Массспектр, $_4$ 9, $_4$ 9; 368 (100) [$_4$ 9] Найдено, %: С 58.53; H 4.42; N 15.29. С $_{18}$ Н $_16$ N $_4$ O $_3$ S. Вычислено, %: С 58.68; H 4.38; N 15.21.

Этил-3,4-диамино-6-[4-(диметиламино)фенил]-5-цианотиено[2,3-b]пиридин-2-карбоксилат (2e). Выход 72%, т. пл. 269–270°С (разл.). ИК спектр, v, см⁻¹: 1644 с (C=O), 2299 ср (C \equiv N), 3315 ш, 3371 ш (NH₂). Спектр ЯМР ¹Н, б, м. д.: 1.28 т (3H, OCH₂CH₃, ³J_{HH} 7.1 Гц), 2.99 с [6H, N(CH₃)₂],4.27 к (2H, OCH₂CH₃, ${}^{3}J_{HH}$ 7.1 Гц), 6.78 д (2H, C_6H_4 , ${}^3J_{HH}$ 8.6 Гц), 7.14 с (2H, NH₂), 7.28 с (2H, NH_2), 7.74 д (2H, C_6H_4 , $^3J_{HH}$ 8.5 Γ ц). Спектр ЯМР ¹³С, $\delta_{\text{С}}$, м. д.: 15.08 (ОСН₂СН₃), 40.42 [4-(H₃С)₂N- C_6H_4 , 60.63 (OCH₂CH₃), 85.61, 92.99 (C⁵, C²), 109.14 (C^{3a}), 111.77 (C_6H_4), 118.35 ($C\equiv N$), 130.61 (C_6H_4) , 124.95, 150.32, 152.08, 155.14 $(C^{1a} C^3)$ C_6H_4), 161.62, 164.85, 165.07 (C=O, C⁴, C⁶). Maccспектр, m/z ($I_{\text{отн}}$, %): 381 (100) $[M]^+$, 309 (58) [M-СООС₂H₅]⁺. Найдено, %: С 59.98; Н 5.02; N 15.81. С₁₀H₁₀N₅O₂S. Вычислено, %: С 59.83; Н 4.96; N 18.28.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Алексеева Анастасия Юрьевна, ORCID: https://orcid.org/0000-0001-5607-6969

Иевлев Михаил Юрьевич, ORCID: https://orcid.org/0000-0003-0741-2254

Зиновьева Елена Геннадьевна, ORCID: https://orcid.org/0000-0002-5591-4446

Ершов Олег Вячеславович, ORCID: https://orcid.org/0000-0002-0938-4659

Ершова Анастасия Игоревна, ORCID: https://orcid.org/0000-0003-4095-6122

Бардасов Иван Николаевич, ORCID: https://orcid.org/0000-0002-5843-3381

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 8 2023

ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках государственного задания Министерства образования и науки России (проект № FEGR-2023-0004).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X23080061 для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Доценко В.В., Бурый Д.С., Лукина Д.Ю., Кривоколыско С.Г. // Изв. АН. Сер. хим. 2020. Т. 69.
 № 10. С. 1829; Dotsenko V.V., Buryi D.S., Lukina D.Y., Krivokolysko S.G. // Russ. Chem. Bull. 2020. Vol. 69. |N
 10. P. 1829. doi 10.1007/S11172-020-2969-2
- Zhao Y., Li M., Li B., Zhang S., Su A., Xing Y., Ge Z., Li R., Yang B. // Eur. J. Med. Chem. 2019. Vol. 172. P. 131. doi 10.1016/J.EJMECH.2019.03.060
- Qin T., Gao X., Lei L., Zhang W., Feng J., Wang X., Shen Z., Liu Z., Huan Y., Wu S., Xia J., Zhang L. // Eur. J. Med. Chem. 2023. Vol. 245. P. 114903. doi 10.1016/J. EJMECH.2022.114903
- Saito K., Shinozuka T., Nakao A., Kiho T., Kunikata T., Shiiki T., Nagai Y., Naito S. // Bioorg. Med. Chem. Lett. 2019. Vol. 29. N 14. P. 1769. doi 10.1016/J. BMCL.2019.05.014
- 5. Chopko T.C., Han C., Gregro A.R., Engers D.W., Felts A.S., Poslusney M.S., Bollinger K.A., Morrison R.D., Bubser M., Lamsal A., Luscombe V.B., Cho H.P., Schnetz-Boutaud N.C., Rodriguez A.L., Chang S., Daniels J.S., Stec D.F., Niswender C.M., Jones C.K., Wood M.R., Wood M.W., Duggan M.E., Brandon N.J., Conn P.J., Bridges T.M., Lindsley C.W., Melancon B.J. // Bioorg. Med. Chem. Lett. 2019. Vol. 29. N 16. P. 2224. doi 10.1016/J.BMCL.2019.06.032
- Binsaleh N.K., Wigley C.A., Whitehead K.A., van Rensburg M., Reynisson J., Pilkington L.I., Barker D., Jones S., Dempsey-Hibbert N.C. // Eur. J. Med. Chem. 2018. Vol. 143. P. 1997. doi 10.1016/J. EJMECH.2017.11.014
- Ma F., Liu J., Zhou T., Lei M., Chen J., Wang X., Zhang Y., Shen X., Hu L. // Eur. J. Med. Chem. 2018. Vol. 152. P. 307. doi 10.1016/J.EJMECH.2018.04.028

- Racha H., Vadla B., Peddolla K., Betala S. // J. Heterocycl. Chem. 2019. Vol. 56. N 6. P. 1844. doi 10.1002/JHET.3566
- Bhoomandla S., Gunda S.K., Kotoori S., Kanuparthy P.R. // J. Heterocycl. Chem. 2019. Vol. 56. N 7. P. 1986. doi 10.1002/JHET.3578
- Sirakanyan S.N., Spinelli D., Geronikaki A., Hakobyan E.K., Sahakyan H., Arabyan E., Zakaryan H., Nersesyan L.E., Aharonyan A.S., Danielyan I.S., Muradyan R.E., Hovakimyan A.A. // Molecules. 2019. Vol. 24. P. 3952. doi 10.3390/MOLECULES24213952
- 11. Mohi El-Deen E.M., Abd El-Meguid E.A., Hasabelnaby S., Karam E.A., Nossier E.S. // Molecules. 2019. Vol. 24. P. 3650. doi 10.3390/MOLECULES24203650
- Kumar G.S., Poornachandra Y., Reddy K.R., Kumar C.G., Narsaiah B. // Synth. Commun. 2017. Vol. 47. N 20. P. 1864. doi 10.1080/00397911.2017.1354379
- Gerwien A., Reinhardt T., Mayer P., Dube H. // Org. Lett. 2018. Vol. 20. N 1. P. 232. doi 10.1021/ACS. ORGLETT.7B03574
- Mast N., Erb W., Nauton L., Moreau P., Mongin O., Roisnel T., Macaigne M., Robert T., Bach S., Picot L., Thiéry V., Hurvois J.P., Mongin F. // New J. Chem. 2022. Vol. 47. N 1. P. 258. doi 10.1039/d2nj04567b
- Ershov O.V., Shishlikova M.A., Ievlev M.Y., Belikov M.Y., Maksimova V.N. // Tetrahedron. 2019. Vol. 75. N 34. P. 130465. doi 10.1016/j.tet.2019.130465
- 16. Abuelhassan S., Bakhite E.A., Abdel-Rahman A.E., El-Mahdy A.F.M., Saddik A.A., Marae I.S., Abdel-Hafez S.H., Tolba M. // J. Heterocycl. Chem. 2023. Vol. 60. N 3. P. 458. doi 10.1002/jhet.4600
- 17. EL-Mahdy A.F.M., Bakhite E.A., Abdel-Hafez S.H., Ibrahim O.F., Abdu-Allah H.H.M., Marae I.S. // J. Heterocycl. Chem. 2022. Vol. 59. N 2. P. 359. doi 10.1002/JHET.4391
- 18. Won Lee C., Yeob Lee J. // Chem. Commun. 2013. Vol. 49. N 14. P. 1446. doi. 10.1039/c2cc38049h
- Shi Y., Yang G., Shen B., Yang Y., Yan L., Yang F., Liu J., Liao X., Yu P., Bin Z., You J. // J. Am. Chem. Soc. 2021. Vol. 143. N 49. doi 10.1021/jacs.1c11277
- 20. *Ho Y.W.* // Dye. Pigment. 2005. Vol. 64. N 3. P. 223. doi 10.1016/J.DYEPIG.2004.06.007
- 21. Bardasov I.N., Mihailov D.L., Alekseeva A.U., Ershov O.V., Nasakin O.E. // Tetrahedron Lett. 2013. Vol. 54. N 1. P. 21. doi 10.1016/J.TETLET.2012.10.015
- 22. *Bardasov I.N., Alekseeva A.U., Ershov O.V. //*Tetrahedron Lett. 2018. Vol. 59. N 14. P. 1398. doi
 10.1016/J.TETLET.2018.02.069
- 23. Ershova A.I., Alekseeva A.U., Ershov O.V., Ievlev M.Y., Bardasov I.N. // Dyes and Pigments. 2022. Vol. 197. P. 109914. doi 10.1016/J.DYEPIG.2021.109914
- 24. Литвинов В.П., Доценко В.В., Кривоколыско С.Г. // Изв. АН. Сер. хим. 2005. Т. 54. № 4. С. 847;

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 8 2023

- *Litvinov V.P., Dotsenko V.V., Krivokolysko S.G.* // Russ. Chem. Bull. 2005. Vol. 54. N 4. P. 864. doi 10.1007/S11172-005-0333-1
- Dotsenko V.V., Buryi D.S., Lukina D.Y., Stolyarova A.N., Aksenov N.A., Aksenova I. V., Strelkov V.D., Dyadyuchenko L. V. // Monat. Chem. 2019. Vol. 150. N 11. P. 1973. doi 10.1007/S00706-019-02505-4
- 26. Дяченко И.В., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. // ЖОХ. 2005. Т. 54. № 10. С. 1423; Dyachenko I.V., Dyachenko V.D., Dorovatovskii P. V., Khrustalev V.N., Nenajdenko V.G. // Russ. J. Org. Chem. 2018. Vol. 54. N 10. P. 1435. doi 10.1134/S1070428018100019
- El-Sayed A.M. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2006. Vol. 163. N 1. P. 29. doi 10.1080/10426500008046608
- 28. Доценко В.В., Исмиев А.И., Хрусталева А.Н., Фролов К.А., Кривоколыско С.Г., Чигорина Е.А., Снижко А.П., Громенко В.М., Бушмаринов И.С.,

- Аскеров Р.К., Пехтерева Т.М., Суйков С.Ю., Папаянина Е.С., Мазепа А.В., Магеррамов А.М. // ХГС. 2016. Т. 52. № 7. С. 473; Dotsenko V.V., Ismiev A.I., Khrustaleva A.N., Frolov K.A., Krivokolysko S.G., Chigorina E.A., Snizhko A.P., Gromenko V.M., Bushmarinov I.S., Askerov R.K., Pekhtereva T.M., Suykov S.Y., Papayanina E.S., Mazepa A.V., Magerramov A.M. // Chem. Heterocycl. Compd. 2016. Vol. 52. N 7. P. 473. doi. 10.1007/S10593-016-1918-3
- 29. Григорьев А.А., Карпов С.В., Каюков Я.С., Насакин О.Е., Грачева Ю.А., Тафеенко В.А. // ХГС. 2017. Т. 53. № 2. С. 230; Grigor'ev A.A., Karpov S.V., Kayukov Y.S., Nasakin O.E., Gracheva I.A., Tafeenko V.A. // Chem. Heterocycl. Compd. 2017. Vol. 53. N 2. P. 230. doi 10.1007/S10593-017-2044-6
- 30. *Brouwer A.M.* // Pure Appl. Chem. 2011. Vol. 83. N 12. P. 2213. doi 10.1351/PAC-REP-10-09-31
- Catalan J. // J. Phys. Chem. (B). 2009. Vol. 113. N 17.
 P. 5951. doi 10.1021/jp8095727

Synthesis of New Efficient Fluorophores of Thieno[2,3-b] pyridine Series

A. U. Alekseeva^a, M. Yu. Ievlev^a, E. G. Zinovieva^a, O. V. Ershov^a, A. I. Ershova^a, and I. N. Bardasov^{a,*}

^a I.N. Ulyanov Chuvash State University, Cheboksary, 428015 Russia *e-mail: bardasov.chem@mail.ru

Received May 27, 2023; revised July 6, 2023; accepted July 10, 2023

The reaction of 4-amino-6-aryl-2-halopyridine-3,5-dicarbonitriles with thioglycolic acid ethyl ester was used to synthesize a series of new efficient fluorophores of thieno[2,3-b]pyridine series. The long-wavelength absorption bands of DMSO solutions of the prepared compounds are at the boundary of the UV and visible regions of the spectrum (λ_{abs} 375–388 nm) and show an ambiguous influence of the substituent electronic effect, that was explained by quantum chemical calculations. The emission maxima are in the yellow-green region (λ_{em} 490–510 nm) and they are blue-shifted in the presence of electron donor groups with slightly increasing intensity (Φ_{em} 37.8–60.6%). It was found that the nitro group presence causes a complete photoluminescence quenching both in solution and in the solid state. In addition, the position of the emission maximum (λ_{em} 473–505 nm) and its intensity (Φ_{em} 3.6–72.7%) strongly depend on the polarity and the basic properties of the medium, that was established using the Catalan empirical model.

Keywords: thieno[2,3-*b*]pyridines, fluorescence, solvatochromism, nucleophilic substitution