RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Investigation of strategies for the interclass prediction of the activity of bipharmacophore butyrylcholinesterase inhibitors based on QSAR modeling

PII
10.31857/S0044460X24100058-1
DOI
10.31857/S0044460X24100058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 10
Pages
1058-1068
Abstract
Three schemes of interclass prediction of the activity of a number of bipharmacophoric butyrylcholinesterase inhibitors were studied using QSAR modeling. Using machine learning methods (multiple linear regression, random forest, support vector machine and Gaussian process), QSAR models with satisfactory statistical characteristics were constructed. Based on them, rational and random interclass prediction schemes were studied. It was found that these schemes complement each other and their relative efficiency was assessed.
Keywords
межклассовый прогноз активности бутирилхолинэстераза QSAR
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Schlander M., Hernandez-Villafuerte K., Cheng C.Y., Mestre-Ferrandiz J., Baumann M. // Pharmacoeconomics. 2021. Vol. 39. P. 1243. doi 10.1007/s40273-021-01065-y
  2. 2. Sadybekov A.V., Katritch V. // Nature. 2023. Vol. 616. P. 673. doi 10.1038/s41586-023-05905-z
  3. 3. Doytchinova I. // Molecules. 2022. Vol. 27. P. 1496. doi 10.3390/molecules27051496
  4. 4. Niazi S.K., Mariam Z. // Pharmaceuticals. 2024. Vol. 17. P. 22. doi 10.3390/ph17010022
  5. 5. Baig M.H., Ahmad K., Roy S., Ashraf J.M., Adil M., Siddiqui M.H., Khan S., Kamal M.A., Provazník I., Choi I. // Curr. Pharm. Des. 2016. Vol. 22. P. 572. doi 10.2174/ 1381612822666151125000550
  6. 6. Зефирова О.Н., Зефиров Н.С. // Вестн. Московск. унив. Сер. 2. Химия. 2000. Т. 41. С. 103.
  7. 7. Hu Y., Stumpfe D., Bajorath J. // J. Med. Chem. 2017. Vol. 60. P. 1238. doi 10.1021/acs.jmedchem.6b01437
  8. 8. Stojanović L., Popović M., Tijanić N., Rakočević G., Kalinić M. // J. Chem. Inf. Model. 2020. Vol. 60. P. 4629. doi 10.1021/acs.jcim.0c00622
  9. 9. Acharya A., Yadav M., Nagpure M., Kumaresan S., Guchhait S.K. // Drug Discov. Today. 2024. Vol. 29. Article no. 103845. doi 10.1016/j.drudis.2023.103845
  10. 10. Wang Y., Jia S., Wang F., Jiang R., Yin X., Wang S., Jin R., Guo H., Tang Y., Wang Y. // Int. J. Mol. Sci. 2024. Vol. 25. Article no. 7434. doi 10.3390/ijms25137434
  11. 11. Floresta G., Rescifina A., Marrazzo A., Dichiara M., Pistarà V., Pittalà V., Prezzavento O., Amata E. // Eur. J. Med. Chem. 2017. Vol. 139. P. 884. doi 10.1016/ j.ejmech.2017.08.053
  12. 12. Škuta C., Cortés-Ciriano I., Dehaen W., Kříž P., van Westen G.J.P., Tetko I.V., Bender A., Svozil D. // J. Cheminform. 2020. Vol. 12. P. 39. doi 10.1186/s13321-020-00443-6
  13. 13. Zheng S., Lei Z., Ai H., Chen H., Deng D., Yang Y. // J. Cheminform. 2021. Vol. 13. P. 87. doi 10.1186/s13321-021-00565-5
  14. 14. Ryszkiewicz P., Malinowska B., Schlicker E. // Pharmacol. Rep. 2023. Vol. 75. P. 755. doi 10.1007/s43440-023-00501-4
  15. 15. Sánchez-Tejeda J.F., Sánchez-Ruiz J.F., Salazar J.R., Loza-Mejía M.A. // Front. Chem. 2020. Vol. 8. P. 176. doi 10.3389/fchem.2020.00176
  16. 16. Albertini C., Salerno A., de Sena Murteira Pinheiro P., Bolognesi M.L. // Med. Res. Rev. 2021. Vol. 41. P. 2606. doi 10.1002/med.21699
  17. 17. Zhou S., Huang G. // Biomed. Pharmacother. 2022. Vol. 146. Article no. 112556. doi 10.1016/j.biopha. 2021.112556
  18. 18. Greig N.H., Lahiri D.K., Sambamurti K. // Int. Psychogeriatr. 2002. Vol. 14. P. 77. doi 10.1017/s1041610203008676
  19. 19. Makhaeva G.F., Shevtsova E.F., Boltneva N.P., Lushchekina S.V., Kovaleva N.V., Rudakova E.V., Bachurin S.O., Rudy J. Richardson R.J. // Chem. Biol. Interact. 2019. Vol. 308. P. 224. doi 10.1016/j.cbi.2019.05.020
  20. 20. Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., Boltneva N.P., Lushchekina S.V., Gabrelyan A.V., Zamoyski V.L., Dubova L.G., Rudakova E.V., Fisenko V.P., Bovina E.V., Richardson R.J. // Molecules. 2021. Vol. 26. P. 5527. doi 10.3390/molecules26185527
  21. 21. Kiralj R., Ferreira M.M.C. // J. Braz. Chem. Soc. 2009. Vol. 20. P. 770. doi 10.1590/S0103-50532009000400021
  22. 22. Tropsha A., Gramatica P., Gombar V.K. // QSAR Comb. Sci. 2003. Vol. 22. P. 69. doi 10.1002/qsar.200390007
  23. 23. Kumar S., Manoharan A., Jayalakshmi J., Abdelgawad M.A., Mahdi W.A., Alshehri S., Ghoneim M.M., Pappachen L.K., Zachariah S.M., Aneesh T.P., Mathew B. // RSC Adv. 2023.Vol. 13. P. 9513. doi 10.1039/d3ra00526g
  24. 24. Pang X., Fu H., Yang S., Wang L., Liu A.-L., Wu S., Du G.-H. // Molecules. 2017. Vol. 22. P. 1254. doi 10.3390/molecules22081254
  25. 25. Fortran Numerical Library. https://developer.nvidia.com/imsl-fortran-numerical-library?display=default
  26. 26. Random Forest. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_examples/prog.f
  27. 27. Suykens J.A.K., Vandewalle J. // Neural Process. Lett. 1999. Vol. 9. P. 293. doi 10.1023/A:1018628609742
  28. 28. Gaussian Processes for Machine Learning. http://gaussianprocess.org/gpml/
  29. 29. Landrum G.A., Riniker S. // J. Chem. Inf. Model. 2024. Vol. 64. P. 1560. doi 10.1021/acs.jcim.4c00049
  30. 30. Mitra I., Saha A., Roy K. // Mol. Simul. 2010. Vol. 36. P. 1067. doi 10.1080/08927022.2010.503326
  31. 31. Kubinyi H. // Quant. Struct. Act. Relat. 1994. Vol. 13. P. 285. doi 10.1002/qsar.19940130306
  32. 32. Willett P., Barnard J.M., Downs G.M. // J. Chem. Inf. Comput. Sci. 1998. Vol. 38. P. 983. doi 10.1021/ci9800211
  33. 33. Раздольский А.Н., Казаченко В.П., Страхова Н.Н., Григорьев В.Ю. // Современные наукоемкие технологии. 2023. Вып. 10. С. 63. doi 10.17513/snt.39792
  34. 34. Trepalin S.V., Razdolskii A.N., Raevskii O.A. // Pharm. Chem. J. 2000. Vol. 34. P. 650. doi 10.1023/ A:1010499601434
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library