RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis and Comparative Study of Silicone Composites Containing Sodium Diclofenac Using New Types of Cross-Linking Agents

PII
10.31857/S0044460X24090073-1
DOI
10.31857/S0044460X24090073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 9
Pages
1000-1010
Abstract
A new type of silicone composites in the form of films containing sodium diclofenac were obtained, which can potentially be used as transdermal patches. Glycerol and propylene glycol analogues of tetraethoxysilane, tetrakis(2,3-dihydroxypropoxy)silane and tetrakis(2-hydroxypropoxy)silane, were first used to cure polydimethylsiloxane with terminal hydroxyl groups (PDMS-OH) to obtain silicone composites. It was shown that these cross-linking agents have a number of advantages over tetraethoxysilane.
Keywords
трансдермальные пленки сшивающие агенты натриевая соль диклофенака
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Haley R.M., von Recum H.A. // Exp. Biol. Med. 2019. Vol. 244. P. 433. doi 10.1177/1535370218787770
  2. 2. Blanca-Lopez N., Soriano V., Garcia-Martin E., Canto G., Blanca M. // J. Asthma Allergy. 2019. Vol. 12. P. 217. doi 10.2147/JAA.S164806
  3. 3. McGettigan P., Henry D. // PLoS Medicine. 2013. Vol. 10. N 2. P. 1. e1001388. doi 10.1371/journal.pmed.1001388
  4. 4. Davis A., Robson J. // British J. Gen. Pract. 2016. Vol. 66. P. 172. doi 10.3399/bjgp16X684433
  5. 5. Awachat A., Shukla D., Bhola N.D. // Cureus. 2022. Vol. 14. P. e30411. doi 10.7759/cureus.30411
  6. 6. Kapo S.M., Rakanović-Todić M., Burnazović-Ristić L., Kusturica J., Ćesić A.K., Ademović E., Aganović-Mušinović I. // J. King Saud Univ. Sci. 2023. Vol. 35. N 1. P. 102394. doi 10.1016/j.jksus.2022.102394
  7. 7. Snorradottir B.S., Gudnason P.I., Scheving R., Thorsteinsson F., Masson M. // Pharmazie. 2009. Vol. 64. P. 19. doi 10.1691/ph.2008.8206
  8. 8. Ailincai D., Dorobanțu A.M., Dima B., Irimiciuc Ș.A., Lupașcu C., Agop M., Olguta O. // J. Immunol. Res. 2020. P. 1. doi 10.1155/2020/3124304
  9. 9. Sa’adon S., Ansari M.N.M., Razak S.I.A., Anand J.S., Nayan N.H.M., Ismail A.E., Haider A. // Polymer. 2021. Vol. 15. P. 2459. doi 10.3390/polym13152459
  10. 10. Stewart S.A., Domínguez-Robles J., Donnelly R.F., Larrañeta E. // Polymer. 2018. Vol. 10. N 12. P. 1379. doi 10.3390/polym10121379
  11. 11. Soroory H., Mashak A., Rahimi A. // Iran. Polym. J. 2013. Vol. 22. P. 791. doi 10.1007/s13726-013-0178-7
  12. 12. Mashak A., Rahimi A. // Iran. Polym. J. 2009. Vol. 18. N 4. P. 279.
  13. 13. Mikolaszek B., Kazlauske J., Larsson A., Sznitowska M. // Polymer. 2020. Vol. 12. N 7. P. 1520. doi 10.3390/polym12071520
  14. 14. Gafar Ahmed M., AlHammad Z.A., Al-Jandan B. // Cureus. 2023. Vol. 15. N 2. P. e 34524.
  15. 15. Mojsiewicz-Pieńkowska K. // Handbook of Polymers for Pharmaceutical Technologies, 2015. Vol. 2. P. 363. doi 10.1002/9781119041412
  16. 16. Aliyar H., Schalau G. 2nd // Therapeutic Deliv. 2015. Vol. 6. N 7. P. 827. doi 10.4155/tde.15.39
  17. 17. Snorradottir B.S., Gudnason P.I., Scheving R., Thorsteinsson F., Masson M. // Pharmazie. 2009. Vol. 64. P. 19. https://doi.org/10.1691/ph.2008.8206
  18. 18. Malcolm R., McCullagh S., Woolfson A., Gorman S., Jones D., Cuddy J. // J. Control. Release. 2003. Vol. 97. P. 313. doi 10.1016/j.jconrel.2004.03.029
  19. 19. Mark J.E., Sullivan J.L. // J. Chem. Phys. 1977. Vol. 66. P. 1006. doi 10.1063/1.434056
  20. 20. Brook M.A., Holloway A.C., Kenneth K.N., Hrynyk M., Moore C., Ryan L. // Int. J. Pharm. 2008. Vol. 358. P. 121. doi 10.1016/j.ijpharm.2008.02.029
  21. 21. Soulas D.N., Sanopoulou M., Papadokostaki K.G. // Mater. Sci. Eng. 2013. Vol. C33. P. 2122. doi 10.1016/ j.msec.2013.01.031
  22. 22. Mark J.E., Jiang C.Y., Tang M.Y. // Macromolecules. 1984. Vol. 17. P. 2613. doi 10.1021/ma00142a026
  23. 23. Yuan Q.W., Mark J.E. // Macromol. Chem. Phys. 1999. Vol. 200. P. 206. doi 10.1002/(SICI)1521-3935(19990101) 200:1%3C206::AID-MACP206%3E3.0.CO;2-S
  24. 24. Robinson M.W.C., Swain A.C., Khan N.A. // Polym. Degrad. Stab. 2015. Vol. 116. P. 88. doi 10.1016/ j.polymdegradstab.2013.10.011
  25. 25. Rajendra V., Chen Y., Brook M.A. // Polym. Chem. 2010. Vol. 1. P. 312. doi 10.1039/B9PY00220K
  26. 26. Чупахин О.Н., Хонина Т.Г., Ларионов Л.П., Шадрина Е.В., Бойко А.А., Забокрицкий Н.А., Волков А.А. Пат. РФ 2382046 С1; Б. И. 2010. № 5
  27. 27. Atabekyan M.L., Farmazyan Z.M., Grigoryan S.G., Lavanant L., Topuzyan V.O. Pat. EU 4322906 (2024); Pat. JP2024514128A (2024).
  28. 28. Mazurek A., Brook M.A., Skov A.L. // Langmuir. 2018. Vol. 34. P. 11559. doi 0.1021/acs.langmuir.8b02039
  29. 29. Григорян С.Г., Акопян Э.А., Акобян Р.М., Фармазян З.М., Атабекян М.Л., Топузян В.О. // ЖОХ. 2023. Т. 93. № 8. С. 1281. doi 10.31857/S0044460X23080139; Grigoryan S.G., Hakopyan E.H., Hakobyan R.M., Farmazyan Z.M., Atabekyan M.L., Topuzyan V.O. // Russ. J. Gen. Chem. 2023. Vol. 93. N 8. P. 2048. doi 10.1134/S1070363223080133
  30. 30. Mercier K., Brule Th., Fromentoux L. Quality control of sugar content in beverages using Raman spectroscopy. https://www.horiba.com/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library