RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Complexes of Bromine and Its Derivatives with Nitrogen-Containing Donors: A Quantum Chemical Study

PII
10.31857/S0044460X24090056-1
DOI
10.31857/S0044460X24090056
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 9
Pages
979-986
Abstract
Structural and thermodynamic characteristics of molecular donor-acceptor complexes of BrCl, Br2, IBr with nitrogen-containing Lewis bases are computed by using quantum chemical method M06-2X/def2-TZVP in the gas phase, benzene and acetonitrile solutions in the framework of SMD model. It is shown that the polarity of the solvent significantly influences the structural features and stabilization of the complex with respect to the dissociation process. In case of BrCl complexes with all studied Lewis bases the three center four electron N–Br–Cl bond is realized in acetonitrile solution.
Keywords
бром интергалогениды основания Льюиса донорно-акцепторная связь квантово-химические расчеты влияние растворителя
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Murray J.S., Paulsen K., Politzer P. // Proc. Indian Acad. Sci. (Chem. Sci.) 1994. Vol. 106. P. 267. doi 10.1007/BF02840749
  2. 2. Desiraju G.R., Shing Ho P., Kloo L., Legon A.C., Marquardt R., Metrangolo P., Politzer P., Resnati G., Rissanen K. // Pure Appl. Chem. 2013. Vol. 85. P. 1711. doi 10.1351/PAC-REC-12-05-10
  3. 3. Varadwaj P.R., Varadwaj A., Marques H.M., Yamashita K. // Cryst. Growth Des. 2024. Vol. 24. P. 5494. doi 10.1021/acs.cgd.4c00228
  4. 4. Ma Y.X., Yin H.L., Yang J., Lin H.T., Chen S.H., Zhou J., Zhuo S.P., Wang X.D. // Adv. Opt. Mater. 2022. Vol. 11. P. 2201000. doi 10.1002/adom.202201000
  5. 5. Tepper R., Schubert U.S. // Angew. Chem. Int. Ed. 2018. Vol. 57. P. 6004. doi 10.1002/anie.201707986
  6. 6. Yang H., Wong M.W. // Molecules. 2020. Vol. 25. P. 1045. doi 10.3390/molecules25051045
  7. 7. Mahmudov K.T., Gurbanov A.V., Guseinov F.I., Guedes da Silva M.F.C. // Coord. Chem. Rev. 2019. Vol. 387. P. 32. doi 10.1016/j.ccr.2019.02.011
  8. 8. Gropp C., Quigley B.L., Diederich F. // J. Am. Chem. Soc. 2018. Vol. 140. P. 2705. doi 10.1021/jacs.7b12894
  9. 9. Peluso P., Chankvetadze B. // Chem. Rev. 2022. Vol. 122. P. 13235. doi 10.1021/acs.chemrev.1c00846
  10. 10. Ivanov D.M., Bokach N.A., Kukushkin V.Yu., Frontera A. // Chem. Eur. J. 2022. Vol. 28. P. e202280262. doi 10.1002/chem.202280262
  11. 11. Teyssandier J., Mali K.S., De Feyter S. // ChemistryOpen. 2020. Vol. 9. P. 225. doi 10.1002/open.201900337
  12. 12. Costa P.J., Nunes R., Vila-Viçosa D. // Expert Opin. Drug. Discov. 2019. Vol. 14. P. 805. doi 10.1080/17460441.2019.1619692
  13. 13. Brammer L., Peuronen A., Roseveare T.M. // Acta Crystallogr. (C). 2023. Vol. 79. P. 204. doi 10.1107/S2053229623004072
  14. 14. Marstokk K.-M., Stromme K.O. // Acta Crystallogr. (B). 1968. Vol. 24. P. 713. doi 10.1107/S0567740868003067
  15. 15. Mascal M., Richardson J.L., Blake A.J., Li W.-S. // Tetrahedron Lett. 1996. Vol. 37. P. 3505. doi 10.1016/0040-4039(96)00564-3
  16. 16. Weinberger C., Hines R., Zeller M., Rosokha S.V. // Chem. Commun. 2018. Vol. 54. P. 8060, doi 10.1039/C8CC04629H
  17. 17. Kunkel F., Maichle-Mossmer C., Strahle J., Dehnicke K. // Z. anorg. allg. Chem. 2001. Vol. 627. P. 2445. doi 10.1002/1521-3749(200111)627:113.0.CO;2-W
  18. 18. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // Russ. J. Gen. Chem. 2024. Vol. 94. P. S40. doi 10.1134/S1070363224140068
  19. 19. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comp. Chem. 2025. Vol. 46. P. e27507. doi 10.1002/jcc.27507
  20. 20. Pröhm P., Berg W., Rupf S.M., Müller C., Riedel S. // Chem. Sci. 2023. Vol. 14. P. 2325. doi 10.1039/D2SC06757A
  21. 21. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comp. Chem. 2025. Vol. 46. P. e27549. doi 10.1002/jcc.27549
  22. 22. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comput. Chem. 2024. Vol. 45. P. 903. doi 10.1002/jcc.27300
  23. 23. Reed A.E., Weinstock R.B., Weinhold F. // J. Chem. Phys. 1985. Vol. 83. P. 1736. doi 10.1063/1.449486.
  24. 24. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. Vol. 88. P. 899. doi 10.1021/CR00088A005
  25. 25. Prokudina Y.V., Davydova E.I., Virovets A., Stöger B., Peresypkina E., Pomogaeva A.V., Timoshkin A.Y. // Chem. Eur. J. 2020. Vol. 26. P. 16338. doi 10.1002/chem.202002261
  26. 26. Эмсли Дж. Элементы. М.: Мир, 1993.
  27. 27. Bader R.F.W. Atoms in Molecules, A Quantum Theory. Oxford: Clarendon Press, 1990, p. 438.
  28. 28. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. Vol. 120. P. 215. doi 10.1007/s00214-007-0310-x
  29. 29. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi 10.1039/B508541A
  30. 30. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (B). 2009. Vol. 113. P. 6378. doi 10.1021/jp810292n
  31. 31. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
  32. 32. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. P. 580. doi 10.1002/jcc.22885
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library