- Код статьи
- 10.31857/S0044460X24020106-1
- DOI
- 10.31857/S0044460X24020106
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 94 / Номер выпуска 2
- Страницы
- 253-260
- Аннотация
- В работе представлены значения энергии Гиббса переноса криптанда[2.2.2] из воды в смешанный растворитель вода–диметилсульфоксид с переменным содержанием органического компонента. Определение энергии Гиббса переноса выполнено методом межфазного распределения вещества между несмешивающимися фазами при температуре 298 K. Установлено, что с ростом концентрации диметилсульфоксида в растворе происходит ослабление сольватации криптанда[2.2.2].
- Ключевые слова
- криптанд сольватация коэффициент распределения энергия Гиббса водно-диметилсульфоксидный растворитель
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Ferry J., Larson R.A. // J. Chromatogr. Sci. 1991. Vol. 29. N 11. P. 476. doi 10.1093/chromsci/29.11.476
- 2. Alzakia F.I., Sun W., Pennycook S.J., Tan S.C. // ACS Appl. Mater. Interfac. 2020. Vol. 12. N 2. P. 3096. doi 10.1021/acsami.9b14510
- 3. Liu L., Li B., Ouyang J., Wu Y. // Food Chem. 2020. Vol. 333. P. 127488. doi 10.1016/j.foodchem.2020.127488
- 4. Eugene-Osoikhia T.T., Emesiani M.C. // Chem. Search J. 2019. Vol. 10. N 2. P. 1. http://www.ajol.info/index.php/csj
- 5. Сатьясилан М., Сатишкумар К., Неполрадж А., Малик Д.А., Шупенюк В. // Макрогетероциклы. 2022. Т. 15. № 1. C. 59. doi 10.6060/mhc224206n
- 6. Muhieddine M.H., Viswanath S.K., Armstrong A., Galindo A., Adjiman C.S. // Chem. Eng. Sci. 2022. Vol. 264. P. 118125. doi 10.1016/j.ces.2022.118125
- 7. Kurada K.V., Agarwal A., De S. // Polym. Int. 2020. Vol. 69. P. 920. doi 10.1002/pi.6034
- 8. Трубачев A.B., Суханов E.A. // Аналитика и контроль. 2007. Т. 11. № 4. С. 242.
- 9. Zaitsev D., Egorov I., Agafonov V. // Chemosensors. 2022. Vol. 10. N 3. P. 111. doi 10.3390/chemosensors10030111
- 10. Torkaman P., Yoshimura A., Lavkulich L.M., Veiga M.M. // Metals. 2023. Vol. 13. N 11. P. 1855. doi 10.3390/met13111855
- 11. Maldonado A.M., Basdogan Y., Berryman J.T., Rempe S.B., Keith J.A. // J. Chem. Phys. 2020. Vol. 152. P. 130902. doi 10.1063/1.5143207
- 12. Guo-Zhu J., Jie Q. // Fluid Phase Equilibr. 2014. Vol. 365. P. 5. doi 10.1016/j.fluid.2013.12.014
- 13. Gholiee Y., Salehzadeh S. // J. Mol. Liq. 2020. Vol. 309. P. 113149. doi 10.1016/j.molliq.2020.113149
- 14. Li Z., Shen Y., Huang C. // J. Chem. Thermodyn. 2023. Vol. 185. P. 107109. doi 10.1016/j.jct.2023.107109
- 15. Inoue H., Zhou H., Ando H., Nakagawa S., Yamada T. // Chem. Sci. 2024. Vol. 15. P. 146. doi 10.1039/D3SC04955H
- 16. Liu C., Zhao D., Zhang H., Wang Y., Bai H., Liu Q. // Fluid Phase Equilibr. 2021. Vol. 550. P. 113236. doi 10.1016/j.fluid.2021.113236
- 17. Robertson H., Nelson A.R.J., Prescott S.W., Webber G.B., Wanless E.J. // Polym. Chem. 2023. Vol. 14. P. 1526. doi 10.1039/D2PY01487D
- 18. Хираока М. Краун-соединения. Свойства и применение. М.: Мир, 1986. 363 с.
- 19. Blevins D.W., Rigney G.H., Fang M.Y., Akula M.R., Osborne G.R. // Nucl. Med. Biol. 2019. Vol. 74. P. 41. doi 10.1016/j.nucmedbio.2019.07.008
- 20. Amendola A., Bergamaschi G., Boiocchi M., Albertoc R., Braband H. // Chem. Sci. 2014. Vol. 5. P. 1820. doi 10.1039/c3sc53504e
- 21. Arnaud-Neu F., Spiess B., Schwing-Weill M.J. // Am. Chem. Soc. 1982. Vol. 104. N 21. P. 5641. doi 10.1021/ja00385a014
- 22. Рудаков О.Б., Востров И.А., Федоров С.В., Филиппов А.А., Селеменев В.Ф., Приданцев А.А. Спутник хроматографиста. Методы жидкостной хроматографии. Воронеж: Водолей, 2004. 528 с.
- 23. Граждан К.В., Гамов Г.А., Душина С.В., Шарнин В.А. // ЖФХ. 2012. Т. 86. № 11. С. 1802; Grazhdan K.V., Gamov G.A., Dushina S.V., Sharnin V.A. // Russ. J. Phys. Chem. (A). 2012. Vol. 86. N 11. Р. 1679. doi 10.1134/S0036024412110131
- 24. Аксенова Е.Н. Элементарные способы оценки погрешностей результатов прямых и косвенных измерений. М.: МИФИ, 2003. 16 с.
- 25. Marcus Y. // Rev. Anal. Chem. 2004. Vol. 23. N 4. Р. 269. doi 10.1515/REVAC.2004.23.4.269
- 26. Abraham M.H., Ling H.C. // J. Chem. Soc. Farad. Trans. I. 1984. Vol. 80. P. 3445. doi 10.1039/F19848003445
- 27. Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. Vol. 100. N 3. P. 819. doi 10.1021/cr980144k
- 28. Kalidas C., Raghunath R. // Phys. Chеm. Liq. 1999. Vol. 37. P. 175. doi 10.1080/00319109908045124
- 29. Зятькова Л.А., Гречин А.Г., Афанасьев В.Н. // Коорд. xим. 2004. Т. 30. № 11. С. 854; Zyat’kova L.A., Grechin A.G., Afanas’ev V.N. // Russ. J. Coord. Chem. 2004. Vol. 30. N 11. P. 805. doi 10.1023/ B:RUCO.0000047468.78685.78
- 30. Jimenez-Gravalos F., Diaz N., Francisco E., Martin-Pendas A., Suarez D. // Chem. Phys. Chem. 2018. Vol. 19. N 24. P. 3425. doi 10.1002/cphc.201800733
- 31. Chung Y., Vermeire F.H., Wu H., Walker P.J., Abraham M.H., Green W.H. // J. Chem. Inf. Model. 2022. Vol. 62. N 3. P. 433. doi 10.1021/acs.jcim.1c01103
- 32. Tomar D.S., Asthagiri D., Weber V. // Biophys. J. 2013. Vol. 105. N 6. P. 1482. doi 10.1016/j.bpj.2013.08.011
- 33. Soteras I., Orozco M., Javier L.F. // Brazil. J. Phys. 2004. Vol. 34. N 1. Р. 48. doi 10.1590/S0103-97332004000100008
- 34. Батов Д.В. // От химии к технологии. 2020. Т. 2. № 2. С. 1. doi 10.52957/27821900_2021_02_8
- 35. Ureel Y., Vermeire F.H., Sabbe M.K., Van Geem K.M. // Chem. Eng. J. 2023. Vol. 472. N 15. P. 144874. doi 10.1016/j.cej.2023.144874
- 36. Шарнин В.А., Усачева Т.Р., Кузьмина И.А., Гамов Г.А., Александрийский В.В. Комплексообразование в неводных средах. М.: Ленанд, 2019. 304 с.
- 37. Усачева Т.Р., Кузьмина И.А., Шарнин В.А., Сидоренко Н.С., Воронина С.И. // ЖФХ. 2011. Т. 85. № 6. C. 1047; Usacheva T.R., Kuz’mina I.A., Sharnin V.A., Sidorenko N.S., Voronina S.I. // Russ. J. Phys. Chem. (A). 2011. Vol. 85. N 6. P. 952. doi 10.1134/S0036024411060331
- 38. Thaler A., Cox B.G., Schneider H. // Inorg. Chim. Acta. 2003. Vol. 351. P. 123. doi 10.1016/S0020-1693(03)00193-2
- 39. Shakeel F., Haq N., Salem-Bekhit M.M., Raish M. // J. Mol. Liq. 2017. Vol. 225. P. 833. doi 10.1016/j.molliq.2016.11.009
- 40. Alshahrani S.M., Shakeel F. // Molecules. 2020. Vol. 25. N 9. P. 2124. doi 10.3390/molecules25092124
- 41. Shakeel F., Mothana R.A., Haq N., Siddiqui N.A., Al-Oqail M.M., Al-Rehaily A.J. // J. Mol. Liq. 2016. Vol. 220. P. 823. doi 10.1016/j.molliq.2016.05.015
- 42. Shakeel F., Alshehri S., Imran M., Haq N., Alanazi A., Anwer M.K. // Molecules. 2020. Vol. 25. N 1. P. 171. doi 10.3390/molecules25010171
- 43. Yuan Y., Farajtabar A., Kong L., Zhao H. // J. Chem. Thermodyn. 2019. Vol. 136. P. 123. doi 10.1016/ j.jct.2019.05.007
- 44. Li W., Farajtabar A., Xing R., Zhu Y., Zhao H. // J. Chem. Eng. Data. 2020. Vol. 65. N 4. P. 1695. doi 10.1021/acs.jced.9b01051
- 45. Tinjaca D.A., Martinez F., Almanza O.A., Pena M.A., Jouyban A., Acree Jr.W.E. // Liquids. 2022. Vol. 2. P. 161. doi 10.3390/liquids2030011
- 46. Zhao X., Farajtabar A., Han G., Zhao H. // J. Chem. Thermodyn. 2020. Vol. 144. P. 106085. doi 10.1016/j.jct.2020.106085
- 47. Cysewski P., Przybyłek M., Kowalska A., Tymorek N. // Int. J. Mol. Sci. 2021. Vol. 22. N 14. P. 7365. doi 10.3390/ijms22147365
- 48. Shakeel F., Haq N., Alshehri S., Alenazi M., Alwhaibi A., Alsarra I.A. // Molecules. 2023. Vol. 28. P. 7110. doi 10.3390/molecules28207110
- 49. Ganai S., Mukherjee P., Mahali K., Saha A., Hossain A., Soldatov A.V., Henaish A.M.A., Ahmed J., Roy S. // New J. Chem. 2023. Vol. 47. P. 13547. doi 10.1039/d3nj02412a
- 50. Zhu C., Zhou Y., Zhao H., Farajtabar A. // Chem. Thermodyn. 2020. Vol. 150. P. 106229. doi 10.1016/ j.jct.2020.106229
- 51. Usacheva T.R., Volynkin V.A., Panyushkin V.T., Lindt D.A., Pham T.L., Nguyen T.T.H., Le T.M.H., Alister D.A., Kabirov D.N., Kuranova N.N., Gamov G.A., Kushnir R.A., Biondi M., Giancola C., Sharnin V.A. // Molecules. 2021. Vol. 26. N 15. P. 4408. doi 10.3390/molecules26154408
- 52. Куранова Н.Н., Кабиров Д.Н., Кашина О.В., Фам Т. Л., Усачева Т.Р. // Изв. вузов. Сер. хим. и хим. технол. 2020. Т. 63. № 10. С. 23. doi 10.6060/ivkkt.20206310.6285
- 53. Jabbari M., Khosravi N., Feizabadi M., Ajloo D. // RSC Adv. 2017. Vol. 7. P. 14776. doi 10.1039/c7ra00038c
- 54. Li X., Zhu Y., Zhang X., Farajtabar A., Zhao H. // J. Chem. Eng. Data. 2020. Vol. 65. N 4. P. 1976. doi 10.1021/acs.jced.9b01139
- 55. Гессе Ж.Ф., Исаева В.А., Шарнин В.А. // ЖФХ. 2010. Т. 84. № 2. C. 385; Gesse Zh.F., Isaeva V.A., Sharnin V.A. // Russ. J. Phys. Chem. (A). 2010. Vol. 84. N 2. P. 329. doi 10.1134/S0036024410020299
- 56. Наумов В.В., Исаева В.А., Шарнин В.А. // ЖФХ. 2014. Т. 88. № 3. P. 443. doi 10.7868/S0044453714030194; Naumov V.V., Isaeva V.A., Sharnin V.A. // Russ. J. Phys. Chem. (A). 2014. Vol. 88. N 3. P. 433. doi 10.1134/S0036024414030194
- 57. Нищенков А.В., Шарнин В.А., Шорманов В.А., Крестов Г.А. // ЖФХ. 1990. Т. 84. № 1. С. 114.
- 58. Mucci A., Domain R., Benoit R.L. // Can. J. Chem. 1980. Vol. 58. N 9. P. 953. doi 10.1139/v80-151
- 59. Cox B. G., Firman P., Gudlin D., Schneider H. // J. Phys. Chem. 1982. Vol. 86. N 25. 4988. doi 10.1021/j100222a030
- 60. Namor A.F.D., Ponce H.B., Viguria E.C. // J. Chem. Soc. Farad. Trans. I. 1986. Vol. 82. P. 2811. doi 10.1039/F19868202811
- 61. Чуев Г.Н., Базилевский М.В. // Усп. хим. 2003. Т. 72. № 9. С. 827; Chuev G.N., Basilevsky M.V. // Russ. Chem. Rev. 2003. Vol. 72. N 9. P. 735. doi 10.1070/RC2003v072n09ABEH000775
- 62. Xue M., Huang D.-Z., Yang K.-X., Chen L.-Z., Zheng Z.-H., Xiang Y., Huang Q.-W., Wang J.-L. // J. Mol. Liq. 2021. Vol. 330. P. 115639. doi 10.1016/j.molliq.2021.115639
- 63. Танганов Б.Б., Могнонов Д.М. // Изв. вузов. Прикл. хим. и биотехнол. 2019. Т. 9. № 4. C. 612. doi 10.21285/2227-2925-2019-9-4-612-620
- 64. Doluia B.K., Bhattacharya S.K., Kundu K.K. // Ind. J. Chem. (A). 2007. Vol. 46. P. 1081.
- 65. Цыпина Н.А., Кижняев В.Н., Адамова Л.В. // Высокомол. соед. (А). 2003. Т. 45. N 10. С. 1718.
- 66. Тюнина Е. Ю., Баделин В. Г. // Жидкие кристаллы и их практ. использование. 2010. Вып. 3 (33). С. 64.
- 67. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. М.: Высшая школа, 1984. 463 с.
- 68. Yang L.-J., Yang X.-Q., Huang K.-M., Jia G.-Z., Shang H. // Int. J. Mol. Sci. 2009. Vol. 10. P. 1261. doi:10.3390/ijms10031261
- 69. Bosch E., Fonrodona G., Rafols C., Roses M. // Analyt. Chim. Acta. 1997. Vol. 349. N 1–3. P. 367. doi 10.1016/S0003-2670(97)00191-8
- 70. Балятинская Л.Н. // Усп. хим. 1979. Т. 48. № 4. С. 772.
- 71. Gutmann V. // Electrochim. Acta. 1976. Vol. 21. N 9. P. 661. doi 10.1016/0013-4686(76)85034-7
- 72. Блументаль Г., Энгельс 3., Фиц И., Хабердитцль В., Хекнер К.-Х., Хенрион Г., Ландсберг Р., Шмидт В., Шольц Г., Штарке П., Вильке И., Вильке К.-Т. Анорганикум. М.: Мир, 1984. 668 с.
- 73. Цветков В.Г., Буслаева М.Н., Кругляк А.И. // Реакц. способн. орг. соед. 1980. Т. 17. Вып. 2(62). С. 129.
- 74. Райхард К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 763 с.
- 75. Карапетьянц М.Х. Введение в теорию химических процессов. М.: Высшая школа, 1981. 333 с.
- 76. Katayama M., Shinoda M., Ozutsumi K., Funahashi S., Inada Y. // Analyt. Sci. 2012. Vol. 28. N 2. Р. 103. doi 10.2116/analsci.28.103
- 77. Mayer U., Gerger W., Gutmann V. // Monatsh. Chem. 1977. Vol. 108. N 2. P. 489. doi 10.1007/BF00902004
- 78. Сергиевский В.В., Скоробогатько Д.С., Рудаков А.М. // ЖФХ. 2010. Т. 84. № 3. C. 412; Sergievskii V.V., Skorobogat’ko D.S., Rudakov A.M. // Russ. J. Phys. Chem. (A). 2010. Vol. 84. N 3. P. 350. doi 10.1134/S0036024410030027
- 79. Верстакова Е.С., Коробковаа С.А., Носаева Т.А. // ЖФХ. 2020. Т. 94. № 4. C. 564. doi 10.31857/S004445372004024X; Verstakov E.S., Korobkova S.A., Nosaeva T.A. // Russ. J. Phys. Chem. (A). 2020. Vol. 94. N 4. P. 738. doi 10.1134/S003602442004024X
- 80. Aguilar M., Dominguez H., Pizio O. // Cond. Matter Phys. 2022. Vol. 25. N 3. P. 33202. doi 10.5488/CMP.25.33202
- 81. Kirchner B., Reiher M. // J. Am. Chem. Soc. 2002. Vol. 124. N 21. P. 6206. doi 10.1021/ja017703g
- 82. Plowas I., Swiergiel J., Jadzyn J. // J. Chem. Eng. Data 2013. Vol. 58. N 6. P. 1741. doi 10.1021/je400149j
- 83. Wong D.B., Sokolowsky K.P., El-Barghouthi M.I., Fenn E.E., Giammanco C.H., Sturlaugson A.L., Fayer M.D. // J. Phys. Chem. (B). 2012. Vol. 116. P. 5479. doi 10.1021/jp301967e
- 84. Lam S.Y., Benoi R.L. // Can. J. Chem. 1974. Vol. 52. N 5. P. 718. doi 10.1139/v74-113
- 85. Macdonald D.D., Hyne J.B. // Can. J. Chem. 1971. Vol. 49. N. 4. P. 611. doi 10.1139/v71-098
- 86. Idrissi A., Marekha B., Barj M., Jedlovszky P. // J. Phys. Chem. (B). 2014. Vol. 118. N 29. P. 8724. doi 10.1021/jp503352f