ОХНМЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Реакции электронного переноса при взаимодействии 12Н-хиноксалино[2,3-b]феноксазинов с π-акцепторами

Код статьи
10.31857/S0044460X24020072-1
DOI
10.31857/S0044460X24020072
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 94 / Номер выпуска 2
Страницы
216-224
Аннотация
На примерах взаимодействия 2,4-ди-(трет-бутил)-12-(4-метоксифенил)-10-метокси-12Н-хиноксалино[2,3-b]феноксазина с π-электронными акцепторами [тетрацианохинодиметаном и 3,6-ди-(трет-бутил)-о-хиноном] показано, что производные этой N,O-пентагетероциклической системы являются эффективными электронодонорами, в мягких условиях реализующими реакции электронного переноса с образованием устойчивых катион- и анион-радикальных структур.
Ключевые слова
хиноксалино[2,3-b]феноксазины ион-радикалы тетрацианохинодиметан спектроскопия ЭПР молекулярная структура
Дата публикации
15.02.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
29

Библиография

  1. 1. Gruntz G., Lee H., Hirsch L., Castet F., Toupance T., Briseno A., Nicolas Y. // Adv. Electron. Mater. 2015. Article no. 1500072. doi 10.1002/aelm.201500072
  2. 2. Tanaka T., Ashida T., Matsumoto S. // Chem. Lett. 2011. Vol. 40. P. 573. doi 10.1246/cl.2011.573
  3. 3. Sharma K., Sharma V., Sharma S.S. // Nanoscale Res. Lett. 2018. Vol. 13. P. 381. doi 10.1186/s11671-018-2760-6
  4. 4. Wadsworth A., Moser M., Marks A., Little M.S., Gasparini N., Brabec C.J., Baran D., McCulloch I. // Chem. Soc. Rev. 2019. Vol. 48. P. 1596. doi 10.1039/c7cs00892a
  5. 5. Ivakhnenko E.P., Knyazev P.A., Omelichkin N.I., Makarova N.I., Starikov A.G., Aleksandrov A.E., Ezhov A.V., Tameev A.R., Demidov O.P., Minkin V.I. // Dyes Pigm. 2022. Vol. 197. P. 109848. doi 10.1016/ j.dyepig.2021.109848
  6. 6. Mishra A. // Energy Environ. Sci. 2020. Vol. 13. P. 4738. doi 10.1039/d0ee02461a
  7. 7. Fu G., Wang T., Cai J., Shi J., Luo Z., Li G., Li X., Zhang Z., Yang S. // Org. Electronics. 2015. Vol. 18. P. 70. doi 10.1016/j.orgel.2015.01.011
  8. 8. Chen X.-K., Coropceanu V., Bredas J.-L. // Nature Commun. 2018. Vol. 9. P. 5295. doi 10.1038/s41467-018-07707-8
  9. 9. Hustings J., Bonné R., Cornelissen R., Morini F., Valcke R., Vandewal K., Manca J. // Front. Photon., Sec. Photovoltaic Materials and Devices. 2022. Vol. 3. doi 10.3389/fphot.2022.1050189
  10. 10. Haran N., Luz Z., Shporer M. // J. Am. Chem. Soc. 1974. Vol. 96. P. 4788. doi 10.1021/ja00822a012
  11. 11. Беспалов Б.П., Титов В.В. // Усп. xим. 1975. Т. 54. С. 2249.
  12. 12. Melby L.R., Harder R.J., Hertler W.R., Mahler W., Benson R.E., Mochel W.E. // J. Am. Chem. Soc. 1962. Vol. 84. P. 3374. doi 10.1021/ja00876a029
  13. 13. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека