RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Method for Synthesis of 4-(4-Hydroxyphenyl)cycloalkanedicarboxylic Acids Based on SEAr Alkylation

PII
10.31857/S0044460X24020015-1
DOI
10.31857/S0044460X24020015
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 2
Pages
167-173
Abstract
A study was carried out on the alkylation reaction of anisole with cycloalkenedicarboxylic acids in the presence of various catalytic systems. It was found that the reaction proceeds with high yields in the presence of aluminum chloride, ferric chloride, and p-toluenesulfonic acid. The possibility of further cleavage of the ether bond to obtain 4-(4-hydroxyphenyl)cycloalkanedicarboxylic acids was demonstrated. The resulting compounds are potential biologically active compounds.
Keywords
алкилирование анизол непредельные циклоалкендикарбоновые кислоты кислоты Льюиса биологическая активность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Gilani S.L., Najafpour G.D., Heydarzadeh H.D., Moghadamnia A. // Chirality. 2017. Vol. 29. P. 304. doi 10.1002/chir.22689
  2. 2. Yuan X., Zhang P., Liu G. // Chem. Pap. 2019. Vol. 73. P. 2461. doi 10.1007/s11696-019-00796-9
  3. 3. Kanada R., Kagoshima Y., Suzuki T., Nakamura A., Funami H., Watanabe J., Asano M., Takahashi M., Ubukata O., Suzuki K., Aikawa T., Sato K., Goto M., Setsu G., Ito K., Kihara K., Kuroha M., Kohno T., Ogiwara H., Isoyama T., Tominaga Y., Higuchi S., Naito H. // J. Med. Chem. 2023. Vol. 66. N 1. P. 695. doi 10.1021/acs.jmedchem.2c01641
  4. 4. Heemers H.V., Debes J.D., Tindall D.J. // Adv. Exp. Med. Biol. 2008. Vol. 617. P. 535. doi 10.1007/978-0-387-69080-3_54
  5. 5. Sobulo O.M., Borrow J., Tomek R., Reshmi S., Harden A., Schlegelberger B., Housman D., Doggett N.A., Rowley J.D., Zeleznik-Le N.J. // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 8732. doi 10.1073/pnas.94.16.8732
  6. 6. Gao Y., Geng J., Hong X., Qi J., Teng Y., Yang Y., Qu D., Chen G. // Int. J. Clin. Exp. Pathol. 2014. Vol. 7. P. 760.
  7. 7. Li M., Luo R.Z., Chen J.W., Cao Y., Lu J.B., He J.H., Wu Q.L., Cai M.Y. // J. Transl. Med. 2011. Vol. 9 N 5. P. 2. doi 10.1186/1479-5876-9-5
  8. 8. Kanada R., Kagoshima Y., Asano M., Suzuki T., Murata T., Haruta M., Takahashi M., Ubukata O., Hashimoto K., Obata K., Kihara K., Kuroha M., Banjo T., Togashi N., Sato K., YamamotoY., Suzuki K., Isoyama T., Tominaga Y., Higuchi S., Naito H. // Bioorg. Med. Chem. Lett. 2022.Vol. 66. P. 128726. doi 10.1016/j.bmcl.2022.128726
  9. 9. Park S., Radmer R.J., Klein T.E., Pande V.S. // J. Comput.Chem. 2005. Vol. 26. P. 1612. doi 10.1002/jcc.20301
  10. 10. DeRider M.L., Wilkens S.J., Waddell M.J., Bretscher L.E., Weinhold F., Raines R.T., Markley J.L. // J. Am. Chem. Soc. 2002. Vol. 124. P. 2497. doi 10.1021/ja0166904
  11. 11. Pandey A.K., Naduthambi D., Thomas K.M., Zondlo N.J. // J. Am. Chem. Soc. 2013. Vol. 135. P. 4333. doi 10.1021/ja3109664
  12. 12. Khanal P. // Monatsh Chem. 2021. Vol. 152. N 4. P. 387. doi 10.1007/s00706-021-02759-x
  13. 13. Eastman R.T., Fidock D.A. // Nat. Rev. Microbiol. 2009. Vol. 7 N 12. P. 864. doi 10.1038/nrmicro2239
  14. 14. Tu Y. // Nat. Med. 2011.Vol. 17. P. 1217. doi 10.1038/nm.2471
  15. 15. Zhang X.-G., Li G.-X., Zhao S.-S., Xu F.-L., Wang Y.-H., Wang W. // Parasitol. Res. 2014. Vol. 113. P. 1769. doi 10.1007/s00436-014-3822-z
  16. 16. Saeed M.E.M., Krishna S., Greten H.J., Kremsner P.G., Efferth T. // Pharmacol. Res. 2016. Vol. 110. P. 216. doi 10.1016/j.phrs.2016.02.017
  17. 17. Caffrey C.R., El-Sakkary N., Mader P., Krieg R., Becker K., Schlitzer M., Drewry D.H., Vennerstrom J.L., Grevelding C.G. In: Neglected Tropical Diseases: Drug Discovery and Development / Eds D. Swinney, M. Pollastri. Wiley‐VCH Verlag GmbH & Co. KGaA, 2019. P. 187. doi 10.1002/9783527808656.ch8
  18. 18. Shinde A.B., Shrigadi N.B., Samant S.D. // Appl. Catal. (A). 2004. Vol. 276. P. 5. doi 10.1016/S0926-860X(03)00612-4
  19. 19. Carltion A.A. // J. Org. Chem. 1948. Vol. 13. P. 120. doi 10.1021/jo01159a016
  20. 20. Sumbramanian S., Mitra A., Satyanarayana C.V.V. // Appl. Catal. (A). 1997. Vol. 159. P. 229. doi 10.1016/S0926-860X(97)00030-6
  21. 21. Krishnan A.V., Ojha K., Pradhan N.C. // Org. Proc. Res. Dev. 2002. Vol. 6. P. 132. doi 10.1021/op010077n
  22. 22. Pandian E., Selvanarayanan R., Sreedevi U. // Chem. Eng. J. Adv. 2020. Vol. 4. P. 100045. doi 10.1016/j.ceja.2020.100045
  23. 23. Bhatt N., Sharma P., Patel A. // Catal. Commun.2008. Vol. 9. P. 1545. doi 10.1016/j.catcom.2007.12.027
  24. 24. Adam F., Mohammed Hello K., Hussein Ali T. // Appl. Catal. (A). 2011. Vol. 399. P. 42. doi 10.1016/j.apcata.2011.03.039
  25. 25. Liao X., Wang S.G., Xiang X. // Fuel Proc. Technol.2012. Vol. 96. P. 74. doi 10.1039/c3ra45921g
  26. 26. Fraga-Dubreuil J., Bourahla K., Rahmouni M. // Catal. Commun. 2002. Vol. 3. P. 185. doi 10.1016/S1566-7367(02)00087-0
  27. 27. Kondamudi K., Elavarasan P., Upadhyayula S. // J. Mol. Catal. (A). 2010. Vol. 321. P. 34. doi 10.1016/j.molcata.2010.01.016
  28. 28. Vafaeezadeh M., Hashemi M.M. // Chem. Eng. J. 2014. Vol. 250. P. 35. doi 10.1016/j.cej.2014.04.001
  29. 29. Valkenberg M.H., Castro C., Holderich W.F. // Green Chem. 2002. Vol. 4. P. 88. doi 10.1039/B107946H
  30. 30. De Klerk A., Nel R.J.J. // Ind. Eng. Chem. Res. 2007. Vol. 46. N 22. P. 7066. doi 10.1021/ie0706459
  31. 31. Yang X., Chatterjee S., Zhang Z., Zhu X., Pittman C.U. // Ind. Eng. Chem. Res. 2010. Vol. 49. N 5. P. 2003. doi 10.1021/ie900998d
  32. 32. Zhao Z., Shi H., Wan C., Hu M.Y., Liu Y., Mei D., Camaioni D.M., Hu J.Z., Lercher J.A. // J. Am. Chem. Soc. 2017. Vol. 139. N 27. P. 9178. doi 10.1021/jacs.7b02153
  33. 33. Wu S., Dong J., Zhou D., Wang W., Liu L., Zhou Y. // J. Org. Chem. 2020. Vol. 85. N 22. P. 14307. doi 10.1021/acs.joc.9b03028
  34. 34. Schefczik E. // Chem. Ber. 1965. Vol. 98. P. 1270.
  35. 35. Колобов А.В., Борисов П.В., Панфилов С.Т., Овчинников К.Л., Данилова А.С., Кофанов Е.Р. // Изв. вузов. Сер. хим. и хим. технол. 2007. Т. 50. № 4. C. 59.
  36. 36. Фирстова А.А., Кофанов Е.Р. // ЖОрХ. 2023. Т. 59. № 5. С. 648. doi 10.31857/S0514749223050129; Firstova A.A., Kofanov E.R. // Russ. J. Org. Chem. 2023. Vol. 59. P. 820. doi 10.1134/S1070428023050123
  37. 37. Reddy V.P., Prakash G.K.S. In: Kirk–Othmer Encyclopedia of Chemical Technology. Wiley, 2013. doi 10.1002/0471238961.0618090515120108.a01.pub2
  38. 38. Reddy Ch.G., Krishna P.R. // J. Org. Chem. 2003. Vol. 68. N 11. P. 4574. doi 10.1021/jo026897v
  39. 39. Gavande N.S., Kundu S., Badgujar N.S., Kaur G., Chakraborti A.K. // Tetrahedron. 2006. Vol. 62. N 17. P. 4201. doi 10.1002/chin.200631044
  40. 40. Kim J.D., Han G., Zee O.P., Jung Y.H. // Tetrahedron Lett. 2003. Vol. 44. N 4. P. 733. doi 10.1016/s0040-4039(02)02648-5
  41. 41. Lin A.I., Madzhidov T.I., Klimchuk O., Nugmanov R.I., Antipin I.S., Varnek A. // J. Chem. Inf. Model. 2016. Vol. 56. N 11. P. 2140. doi 10.1021/acs.jcim.6b00319
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library