RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Charge transfer complexes of nitroderivatives of 9,10-phenanthreqinone with 9-methyl-9H-carbazole: quantum chemical simulation, x-ray diffraction study

PII
10.31857/S0044460X23080085-1
DOI
10.31857/S0044460X23080085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 8
Pages
1226-1239
Abstract
Within the framework of the density functional theory approximation, quantum-chemical calculations were performed and data on the structure and properties of charge-transfer complexes of 9,10-phenanthrenquinone nitro derivatives with 9-methyl-9 H -carbazole were obtained. The formation energies of complexes, the average distances between the donor and acceptor planes, and the values of charge transfer from the donor to the acceptor have been calculated. The crystal and molecular structure of the complex of 2,4,7-trinitro-9,10-phenanthrenquinone with 9-methyl-9 H -carbazole (C14H5N3O8·C13H11N) was determined by X-ray diffraction analysis. In the crystal of the complex, the donor and acceptor molecules form parallel stacks of the {-D-A-D-A-}mixed type with average interplanar distances of 3.29 and 3.35 Å. Each acceptor molecule forms intermolecular hydrogen bonds C-H···O 2.42-2.69 Å.
Keywords
2,4,7-тринитро-9,10-фенантренхинон 9-метил-9H-карбазол комплексы с переносом заряда квантово-химическое моделирование рентгеноструктурный анализ
Date of publication
15.08.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. Mulliken R.S., Person W.B. Molecular Complexes. New York: Wiley-Interscience, 1969. 498 p. doi 10.1016/0022-2860(71)87071-0
  2. 2. Goetz K.P., Vermeulen D., Payne M.E., Kloc C., McNeil L.E., Jurchescu O.D. // J. Mater. Chem. C. 2014. Vol. 2. N 17. P. 3065. doi 10.1039/C3TC32062F
  3. 3. Coleman L.B., Cohen M.J., Sandman D.J., Yamagishi F.G., Garito A.F., Heege A.J. // Solid State Commun. 1973. Vol. 12. N 11. P. 1125. doi 10.1016/0038-1098(73)90127-0
  4. 4. Wosnitza J. // J. Low Temp. Phys. 2007. Vol. 146. P. 641. doi 10.1007/s10909-006-9282-9
  5. 5. Korshak Yu.V., Medvedeva T.V., Ovchinnikov A.A., Spector V.N. // Nature. 1987. Vol. 326. P. 370. doi 10.1038/326370a0
  6. 6. Menard E., Podzorov V., Hur S.-H., Gaur A., Gershenson M.E., Rogers J.A. // Adv. Mater. 2004. Vol. 16. P. 2097. doi 10.1002/adma.200401017
  7. 7. Mukherjee B., Mukherjee M. // Langmuir. 2011. Vol. 27. P. 11246. doi 10.1021/la201780c
  8. 8. Otero R., Gallego J.M., Vasquez de Parga A.L., Martin N., Miranda R. // Adv. Mater. 2011. Vol. 23. P. 5148. doi 10.1002/adma.201102022
  9. 9. Suzuki A., Ohtsuki T., Oku T., Akiyama T. // Mater. Sci. Eng. B. 2012. Vol. 177. P. 877. doi 10.1016/j.mseb.2012.03.052
  10. 10. Shiraishi M., Ikoma T. // Physica (E). 2011. Vol. 43. N 7. P. 1295. doi 10.1016/j.physe.2011.02.010
  11. 11. Стародуб В.А., Стародуб Т.Н. // Усп. хим. 2014. Т. 83. № 5. С. 391
  12. 12. Starodub V.A., Starodub T.N. // Russ. Chem. Rev. 2014. Vol. 83. N 5. P. 391. doi 10.1070/RC2014v083n05ABEH004299
  13. 13. Hu P., Du K., Wei F., Jiang H., Kloc C. // Cryst. Growth Des. 2016. Vol. 16. N 5. P. 3019. doi 10.1021/acs.cgd.5b01675
  14. 14. Singh M., Chopra D. // Cryst. Growth Des. 2018. Vol. 18. N 11. P. 6670. doi 10.1021/acs.cgd.8b00918
  15. 15. Averkiev B., Isaac R., Jucov E.V., Khrustalev V.N., Kloc C., McNeil L.E., Timofeeva T.V. // Cryst. Growth Des. 2018. Vol. 18. N 7. P. 4095. doi 10.1021/acs.cgd.8b00501
  16. 16. Saito G., Murata T. // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008. Vol. 366. P. 139. doi 10.1098/rsta.2007.2146
  17. 17. Yee N., Dadvand A., Hamzehpoor E., Titi H.M., Perepichka D.F. // Cryst. Growth Des. 2021. Vol. 21. P. 2609. Doi 10.1021/acs.cgd.1c00309
  18. 18. Hoegl H., Barchietto G., Tar D. // Photochem. Photobiol. 1972. Vol. 16. P. 335. doi 10.1111/j.1751-1097.1972.tb06303.x
  19. 19. Perepichka I.F., Mysyk D.D., Sokolov N.I. // Synth. Metals. 1999. Vol. 101. P. 9. doi 10.1016/S0379-6779(98)00630-4
  20. 20. Browning Ch., Hudson J.M., Reinheimer E.W., Kuo F.-L., McDougald R.N.Jr., Rabaâ H., Pan H., Bacsa J., Wang X., Dunbar K.R., Shepherd N.D., Omary M.A. // J. Am. Chem. Soc. 2014. Vol. 136. P. 16185. doi 10.1021/ja506583k
  21. 21. Bakulin A.A., Martyanov D., Paraschuk D.Yu., van Loosdrecht H.M.P., Pshenichnikov M.S. // Chemical Physics Letters. 2009. Vol.482. P. 99. doi 10.1016/j.cplett.2009.09.052
  22. 22. Parashchuk O.D., Bruevich V.V., Paraschuk D.Yu. //Phys. Chem. Chem. Phys. 2010. Vol. 12. P. 6021. doi 10.1039/b927324g
  23. 23. Линко Р.В., Рябов М.А., Страшнов П.В., Полянская Н.А., Давыдов В.В., Дороватовский П.В., Линько И.В., Хрусталев В.Н. // ЖСХ. 2021. Т. 62. С. 141. doi 10.26902/JSC_id66742
  24. 24. Linko R.V., Ryabov M.A., Strashnov P.V., Polyanskaya N.A., Davydov V.V., Dorovatovskii P.V., Lin'ko I.V., Khrustalev V.N. // J. Struct. Chem. 2021. Vol. 62. P. 137. doi 10.1134/S0022476621010169
  25. 25. Linko R., Ryabov M., Strashnov P., Dorovatovskii P., Khrustalev V., Davydov V. // Molecules. 2021. Vol. 26. N 21. P. 6391. doi 10.3390/molecules26216391
  26. 26. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2022. Т. 63. № 11. 101104. doi 10.26902/JSC_id101104
  27. 27. Linko R.V., Ryabov M.A., Davydov V.V., Khrustalev V.N. // J. Struct. Chem. 2022. Vol. 63. P. 1758-1769. doi 10.1134/S0022476622110051
  28. 28. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2023. Т. 64. № 8. 114432. doi 10.26902/JSC_id114432 (в печати)
  29. 29. Hu P., Wang Sh., Chaturvedi A., Wei F., Zhu X., Zhang X., Li R., Li Y., Jiang H., Long Y., Kloc Ch. // Cryst. Growth Des. 2018. Vol. 18. P. 1776. doi 10.1021/acs.cgd.7b01669
  30. 30. Гридунова Г.В., Шкловер В.Е., Стручков Ю.Т., Сидоренко Е.Н., Андриевский А.М., Ежкова З.И., Дюмаев К.М. // Изв. АН СССР. Сер. хим. 1986. № 6. С. 1284
  31. 31. Gridunova G.V., Shklover V.E., Struchkov Yu.T., Sidorenko E.N., Andrievskii A.M., Ezhkova Z.I., Dyumaev K.M. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1986. Vol. 35. N 6. P. 1163. doi 10.1007/BF00956588
  32. 32. Jiang W., Ma X., Liu D., Zhao G., Tian W., Sun Y. // Dyes and Pigments. 2021. Vol. 193. Article no. 109519. doi 10.1016/j.dyepig.2021.109519
  33. 33. Kato S., Maezawa M., Hirano S., Ishigaku S. // Yuki Gosei Kagaku Kyokai Shi. 1957. Vol. 15. N 1. P. 29
  34. 34. C. A. 1958. Vol. 51. P. 10462. https://doi.org/10.5059/yukigoseikyokaishi.15.29
  35. 35. Mukherjee T.K. // J. Phys. Chem. 1967. Vol. 71. N 7. P. 2277. doi 10.1021/j100866a04818
  36. 36. Андриевский А.М., Линко Р.В., Грачев М.К. // ЖОрХ. 2013. Т. 49. № 7. С. 1041
  37. 37. Andrievskii A.M., Linko R.V., Grachev M.K. // Russ. J. Org. Chem. 2013. Vol. 49. N 7. P. 1025. doi 10.1134/S1070428013070117
  38. 38. Bruker, SAINT, Bruker AXS Inc.: Madison, WI, 2013.
  39. 39. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. Vol. 48. P. 3. doi 10.1107/S1600576714022985
  40. 40. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218
  41. 41. Boys S.F., Bernardi F. // Mol. Phys. 1970. Vol. 19. N 4. P. 553. doi 10.1080/00268977000101561
  42. 42. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi 10.1002/jcc.21759
  43. 43. Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.
  44. 44. Granovsky A.A. Firefly version 8.20. http://classic.chem.msu.su/gran/firefly/index.html.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library