- PII
- 10.31857/S0044460X23080085-1
- DOI
- 10.31857/S0044460X23080085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 93 / Issue number 8
- Pages
- 1226-1239
- Abstract
- Within the framework of the density functional theory approximation, quantum-chemical calculations were performed and data on the structure and properties of charge-transfer complexes of 9,10-phenanthrenquinone nitro derivatives with 9-methyl-9 H -carbazole were obtained. The formation energies of complexes, the average distances between the donor and acceptor planes, and the values of charge transfer from the donor to the acceptor have been calculated. The crystal and molecular structure of the complex of 2,4,7-trinitro-9,10-phenanthrenquinone with 9-methyl-9 H -carbazole (C14H5N3O8·C13H11N) was determined by X-ray diffraction analysis. In the crystal of the complex, the donor and acceptor molecules form parallel stacks of the {-D-A-D-A-}∞ mixed type with average interplanar distances of 3.29 and 3.35 Å. Each acceptor molecule forms intermolecular hydrogen bonds C-H···O 2.42-2.69 Å.
- Keywords
- 2,4,7-тринитро-9,10-фенантренхинон 9-метил-9H-карбазол комплексы с переносом заряда квантово-химическое моделирование рентгеноструктурный анализ
- Date of publication
- 15.08.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 34
References
- 1. Mulliken R.S., Person W.B. Molecular Complexes. New York: Wiley-Interscience, 1969. 498 p. doi 10.1016/0022-2860(71)87071-0
- 2. Goetz K.P., Vermeulen D., Payne M.E., Kloc C., McNeil L.E., Jurchescu O.D. // J. Mater. Chem. C. 2014. Vol. 2. N 17. P. 3065. doi 10.1039/C3TC32062F
- 3. Coleman L.B., Cohen M.J., Sandman D.J., Yamagishi F.G., Garito A.F., Heege A.J. // Solid State Commun. 1973. Vol. 12. N 11. P. 1125. doi 10.1016/0038-1098(73)90127-0
- 4. Wosnitza J. // J. Low Temp. Phys. 2007. Vol. 146. P. 641. doi 10.1007/s10909-006-9282-9
- 5. Korshak Yu.V., Medvedeva T.V., Ovchinnikov A.A., Spector V.N. // Nature. 1987. Vol. 326. P. 370. doi 10.1038/326370a0
- 6. Menard E., Podzorov V., Hur S.-H., Gaur A., Gershenson M.E., Rogers J.A. // Adv. Mater. 2004. Vol. 16. P. 2097. doi 10.1002/adma.200401017
- 7. Mukherjee B., Mukherjee M. // Langmuir. 2011. Vol. 27. P. 11246. doi 10.1021/la201780c
- 8. Otero R., Gallego J.M., Vasquez de Parga A.L., Martin N., Miranda R. // Adv. Mater. 2011. Vol. 23. P. 5148. doi 10.1002/adma.201102022
- 9. Suzuki A., Ohtsuki T., Oku T., Akiyama T. // Mater. Sci. Eng. B. 2012. Vol. 177. P. 877. doi 10.1016/j.mseb.2012.03.052
- 10. Shiraishi M., Ikoma T. // Physica (E). 2011. Vol. 43. N 7. P. 1295. doi 10.1016/j.physe.2011.02.010
- 11. Стародуб В.А., Стародуб Т.Н. // Усп. хим. 2014. Т. 83. № 5. С. 391
- 12. Starodub V.A., Starodub T.N. // Russ. Chem. Rev. 2014. Vol. 83. N 5. P. 391. doi 10.1070/RC2014v083n05ABEH004299
- 13. Hu P., Du K., Wei F., Jiang H., Kloc C. // Cryst. Growth Des. 2016. Vol. 16. N 5. P. 3019. doi 10.1021/acs.cgd.5b01675
- 14. Singh M., Chopra D. // Cryst. Growth Des. 2018. Vol. 18. N 11. P. 6670. doi 10.1021/acs.cgd.8b00918
- 15. Averkiev B., Isaac R., Jucov E.V., Khrustalev V.N., Kloc C., McNeil L.E., Timofeeva T.V. // Cryst. Growth Des. 2018. Vol. 18. N 7. P. 4095. doi 10.1021/acs.cgd.8b00501
- 16. Saito G., Murata T. // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008. Vol. 366. P. 139. doi 10.1098/rsta.2007.2146
- 17. Yee N., Dadvand A., Hamzehpoor E., Titi H.M., Perepichka D.F. // Cryst. Growth Des. 2021. Vol. 21. P. 2609. Doi 10.1021/acs.cgd.1c00309
- 18. Hoegl H., Barchietto G., Tar D. // Photochem. Photobiol. 1972. Vol. 16. P. 335. doi 10.1111/j.1751-1097.1972.tb06303.x
- 19. Perepichka I.F., Mysyk D.D., Sokolov N.I. // Synth. Metals. 1999. Vol. 101. P. 9. doi 10.1016/S0379-6779(98)00630-4
- 20. Browning Ch., Hudson J.M., Reinheimer E.W., Kuo F.-L., McDougald R.N.Jr., Rabaâ H., Pan H., Bacsa J., Wang X., Dunbar K.R., Shepherd N.D., Omary M.A. // J. Am. Chem. Soc. 2014. Vol. 136. P. 16185. doi 10.1021/ja506583k
- 21. Bakulin A.A., Martyanov D., Paraschuk D.Yu., van Loosdrecht H.M.P., Pshenichnikov M.S. // Chemical Physics Letters. 2009. Vol.482. P. 99. doi 10.1016/j.cplett.2009.09.052
- 22. Parashchuk O.D., Bruevich V.V., Paraschuk D.Yu. //Phys. Chem. Chem. Phys. 2010. Vol. 12. P. 6021. doi 10.1039/b927324g
- 23. Линко Р.В., Рябов М.А., Страшнов П.В., Полянская Н.А., Давыдов В.В., Дороватовский П.В., Линько И.В., Хрусталев В.Н. // ЖСХ. 2021. Т. 62. С. 141. doi 10.26902/JSC_id66742
- 24. Linko R.V., Ryabov M.A., Strashnov P.V., Polyanskaya N.A., Davydov V.V., Dorovatovskii P.V., Lin'ko I.V., Khrustalev V.N. // J. Struct. Chem. 2021. Vol. 62. P. 137. doi 10.1134/S0022476621010169
- 25. Linko R., Ryabov M., Strashnov P., Dorovatovskii P., Khrustalev V., Davydov V. // Molecules. 2021. Vol. 26. N 21. P. 6391. doi 10.3390/molecules26216391
- 26. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2022. Т. 63. № 11. 101104. doi 10.26902/JSC_id101104
- 27. Linko R.V., Ryabov M.A., Davydov V.V., Khrustalev V.N. // J. Struct. Chem. 2022. Vol. 63. P. 1758-1769. doi 10.1134/S0022476622110051
- 28. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2023. Т. 64. № 8. 114432. doi 10.26902/JSC_id114432 (в печати)
- 29. Hu P., Wang Sh., Chaturvedi A., Wei F., Zhu X., Zhang X., Li R., Li Y., Jiang H., Long Y., Kloc Ch. // Cryst. Growth Des. 2018. Vol. 18. P. 1776. doi 10.1021/acs.cgd.7b01669
- 30. Гридунова Г.В., Шкловер В.Е., Стручков Ю.Т., Сидоренко Е.Н., Андриевский А.М., Ежкова З.И., Дюмаев К.М. // Изв. АН СССР. Сер. хим. 1986. № 6. С. 1284
- 31. Gridunova G.V., Shklover V.E., Struchkov Yu.T., Sidorenko E.N., Andrievskii A.M., Ezhkova Z.I., Dyumaev K.M. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1986. Vol. 35. N 6. P. 1163. doi 10.1007/BF00956588
- 32. Jiang W., Ma X., Liu D., Zhao G., Tian W., Sun Y. // Dyes and Pigments. 2021. Vol. 193. Article no. 109519. doi 10.1016/j.dyepig.2021.109519
- 33. Kato S., Maezawa M., Hirano S., Ishigaku S. // Yuki Gosei Kagaku Kyokai Shi. 1957. Vol. 15. N 1. P. 29
- 34. C. A. 1958. Vol. 51. P. 10462. https://doi.org/10.5059/yukigoseikyokaishi.15.29
- 35. Mukherjee T.K. // J. Phys. Chem. 1967. Vol. 71. N 7. P. 2277. doi 10.1021/j100866a04818
- 36. Андриевский А.М., Линко Р.В., Грачев М.К. // ЖОрХ. 2013. Т. 49. № 7. С. 1041
- 37. Andrievskii A.M., Linko R.V., Grachev M.K. // Russ. J. Org. Chem. 2013. Vol. 49. N 7. P. 1025. doi 10.1134/S1070428013070117
- 38. Bruker, SAINT, Bruker AXS Inc.: Madison, WI, 2013.
- 39. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. Vol. 48. P. 3. doi 10.1107/S1600576714022985
- 40. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218
- 41. Boys S.F., Bernardi F. // Mol. Phys. 1970. Vol. 19. N 4. P. 553. doi 10.1080/00268977000101561
- 42. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi 10.1002/jcc.21759
- 43. Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.
- 44. Granovsky A.A. Firefly version 8.20. http://classic.chem.msu.su/gran/firefly/index.html.