RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Structure and stability of group 13/15 hydrides stabilized by Lewis acids and Lewis bases

PII
10.31857/S0044460X23040170-
DOI
10.31857/S0044460X23040170
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 4
Pages
644-653
Abstract
Structural and thermodynamic characteristics of donor-acceptor complexes LA·E′H2EH2·LB(E = B, Al, Ga; E′ = P, As, Sb; LB = SMe2, NMe3);LA- Lewis acids of group 13 elements ER3 (E = B, Al, Ga; R = H, Me, F, Cl, Br, I, C6F5) and transition metal carbonyls Fe(CO)4, M(CO)5, (M = Cr, Mo, W), CpMn(CO)2 were computed by quantum chemical B3LYP-D3/def2-TZVP method. It is shown that removal of the Lewis base is less endothermic than removal of Lewis acid. Stability trends of the complexes depending on group 13/15 elements and Lewis acids were established. Tungsten pentacarbonyl has the highest stabilization effect.
Keywords
водородные соединения элементов 13/15 групп кислоты Льюиса основания Льюиса донорно-акцепторная связь квантово-химические расчеты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Staubitz A., Robertson A.P.M., Sloan M.E., Manners I. // Chem. Rev. 2010. Vol. 110. P. 4023. doi 10.1021/cr100105a
  2. 2. Vogel U., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2001. Vol. 40. P. 4409. doi 10.1002/1521-3773(20011203)40:233.0.CO;2-F
  3. 3. Schwan K.-C., Timoshkin A.Y., Zabel M., Scheer M. // Chem.-Eur. J. 2006, Vol. 12. P. 4900. doi 10.1002/chem.200600185
  4. 4. Marquardt C., Adolf A., Stauber A., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2013. Vol. 19. P. 11887. doi 10.1002/chem.201302110
  5. 5. Butlak A.V., Kazakov I.V., Stauber A., Hegen O., Scheer M., Pomogaeva A.V., Timoshkin A.Y. // Eur. J. Inorg. Chem. 2019. Vol. 35. P. 3885. doi 10.1002/ejic.201900817
  6. 6. Marquardt C., Hegen O., Hautmann M., Balazs G., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2015. Vol. 54. P. 13122. doi 10.1002/anie.201505773
  7. 7. Pomogaeva A.V., Lisovenko A.S., Zavgorodnii A.S., Timoshkin A.Y. // J. Comput. Chem. 2023. Vol. 44. N 3. P. 218. doi 10.1002/jcc.26867
  8. 8. Vogel U., Hoemensch P., Schwan K.-C., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2003. Vol. 9. P. 515. doi 10.1002/chem.200390054
  9. 9. Vogel U., Timoshkin A.Y., Schwan K.-C., Bodensteiner M., Scheer M. // J. Organomet. Chem. 2006. Vol. 691. P. 4556. doi 10.1016/j.jorganchem.2006.04.014
  10. 10. Schwan K.-C., Adolf A., Thoms C., Zabel M., Timoshkin A.Y., Scheer M. // Dalton Trans. 2008. P. 5054. doi 10.1039/B809773A
  11. 11. Marquardt C., Kahoun T., Baumann J., Timoshkin A.Y., Scheer M. // Z. anorg. allg. Chem. 2017. Vol. 643. P. 1326. doi 10.1002/zaac.201700219
  12. 12. Hegen O., Marquardt C., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2017. Vol. 56. P. 12783. doi 10.1002/anie.201707436
  13. 13. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384. doi 10.1021/jp953141+
  14. 14. Ketkov S., Rychagova E., Kather R., Beckmann J. // J. Organomet. Chem. 2021. Vol. 949. P. 121944. doi 10.1016/j.jorganchem.2021.121944
  15. 15. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D.,Ding F.,Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
  16. 16. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 1372. doi 10.1063/1.464304
  17. 17. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
  18. 18. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Vol. 132. P. 154104. doi 10.1063/1.3382344
  19. 19. Weigend F., Ahlrichs R. // Phys Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi 10.1039/B508541A.
  20. 20. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: John Wiley and Sons, 2004, Р. 357.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library