RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis and study of dense materials in the Zr–Al–C system

PII
10.31857/S0044460X23040145-1
DOI
10.31857/S0044460X23040145
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 4
Pages
622-627
Abstract
The initial powders Zr, Al, C and Zr, Al, Sc were used for the synthesis of MAX phases of the composition Zr2AlC and Zr3AlC2. The highest content (50.4 vol%) of the MAX phase Zr3AlC2 was obtained using the initial powders Zr/Al/Zr in the ratio of components 1:1.5:2 with the addition of 5 vol% Al. The optimal temperature for the synthesis of a material based on the MAX phase Zr2AlC is 1525° C, a material based on Zr3AlC2 is 1575°C. The structure of the synthesized MAX materials obtained includes elongated grains of the composition Zr2AlC and Zr3AlC2, which determines their high strength. Zirconium carbide, as an intermediate phase, is always present in the final products. Due to the large evaporation of aluminum, the ZrO2 phase is also present in the synthesis products. Excess aluminum contributes to the greatest formation of Zr2AlC and Zr3AlC2 phases during synthesis.
Keywords
МАХ-фазы синтез Zr<sub>2</sub>AlC и Zr<sub>3</sub>AlC<sub>2</sub> горячее прессование комбинированный синтез микроструктура
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Медведева Н.И., Еняшин А.Н., Ивановский А.Л. // ЖCХ. 2011. Т. 52. № 4. С. 806
  2. 2. Medvedeva N.I., Enyashin A.N., Ivanovskii A.L. // J. Struct. Chem. 2011. Vol. 52. P. 785. doi 10.1134/S0022476611040226
  3. 3. Barsoum M.W. // Progress Solid State Chem. 2000. Vol. 28. N 1-4. P. 201. doi 10.1016/S0079-6786(00)00006-6
  4. 4. Istomin P.V., Nadutkin A.V., Ryabkov Y.I., Goldin B.A. // Inorg. Mater. 2006. Vol. 42. N 3. P. 250. doi 10.1134/S0020168506030071
  5. 5. Zhang Z.F., Sun Z.M., Hashimoto H. // Mater. Lett. 2003. Vol. 57. N 7. P. 1295. doi 10.1016/S0167-577X(02)00974-6
  6. 6. El-Raghy T., Barsoum M.W. // J. Am. Ceram. Soc. 1999. Vol. 82. N 10. P. 2849. doi 10.1111/j.1151-2916.1999.tb02166.x
  7. 7. Gao N.F., Miyamoto Y., Zhang D. // J. Mater. Sci. 1999. Vol. 34. N 18. P. 4385. doi 10.1023/A:1004664500254
  8. 8. Jeitschko W., Nowotny H., Benesovsky F. // Monatsh. Chem. 1964. Vol. 95. N 1. P. 178. doi 10.1007/BF00913068
  9. 9. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. Vol. 267. P. 124625. doi 10.1016/j.matchemphys.2021.124625
  10. 10. Bykova A.D., Semenova V.V., Perevislov S.N., Markov M.A. // Refract. Ind. Ceram. 2021. Р. 89. doi 10.1007/s11148-021-00564-x
  11. 11. Перевислов С.Н., Семенова В.В., Лысенков А.С. // ЖНХ. 2021. Т. 66. № 8. С. 987
  12. 12. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. Р. 1100. doi 10.1134/S0036023621080210
  13. 13. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. P. 215. doi 10.1007/s11148-022-00709-6
  14. 14. Lapauw T., Lambrinou K., Cabioc'h T., Halim J., Lu J., Pesach A., Rivinf O., Ozeri O., Caspi E.N., Hultman L., Eklund P., Rosén J., Barsoum M.W., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 8. P. 1847. doi 10.1016/j.jeurceramsoc.2016.02.044
  15. 15. Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M.W., Lambrinou K., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 3. P. 943. doi 10.1016/j.jeurceramsoc.2015.10.011
  16. 16. Okamoto H. // J. Phase Equilib. Diff. 2002. Vol. 23. N 5. P. 455. doi 10.1361/105497102770331497
  17. 17. Wang T., Jin Z., Zhao J.C. // J. Phase Equilib. 2001. Vol. 22. N 5. P. 544. doi 10.1007/s11669-001-0072-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library