RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

High-temperature synthesis of cobalt nanoparticles in hyperbranched polyester polyol medium

PII
10.31857/S0044460X23010171-1
DOI
10.31857/S0044460X23010171
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 1
Pages
146-152
Abstract
The synthesis of CoNPs cobalt nanoparticles by the method of polyol- process was proposed, which consists in a high-temperature synthesis of polymer-stabilized metal nanoparticles in a matrix of a fourth-generation hyperbranched polyester polyol. Branched polyester polyol acts as both a reducing agent and a stabilizer at the same time. It has been found that the reduction of the precursor CoCl2 with a hyperbranched polyester polyol occurs at 210°C. The introduction of NaOH into the reaction mixture makes it possible to lower the synthesis temperature by 50°C and leads to a change in the mechanism of in situ ripening CoNPs from the digestive mechanism to direct Ostwald ripening.
Keywords
сверхразветвленный полиэфирополиол наночастицы кобальта полиольный метод
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Fievet F., Lagier J., Blin B., Beaudoin B., Figlarz M. // Solid State Ion. 1989. Vol. 32-33. P. 198. doi 10.1016/0167-2738(89)90222-1
  2. 2. Mourdikoudis S. Reducing agents in colloidal nanoparticle synthesis. The Royal Society of Chemistry, 2021. 482 p. doi 10.1039/9781839163623
  3. 3. Liu Q., Cao X., Wang T., Wang C., Zhang Q., Ma L. // RSC Adv. 2015. Vol. 5. N 7. P. 4861. doi 10.1039/c4ra13395a
  4. 4. Takahashi K., Yokoyama S., Matsumoto T., Cuya Huaman J.L., Kaneko H., Piquemal J.Y., Miyamura H., Balachandran J. // New J. Chem. 2016. Vol. 40. N 10. P. 8632. doi 10.1039/c6nj01738j
  5. 5. Eluri R., Paul B. // Mater. Lett. 2012. Vol. 76. P. 36. doi 10.1016/j.matlet.2012.02.049
  6. 6. Silvert P.Y., Herrera-Urbina R., Duvauchelle N., Vijayakrishnan V., Elhsissen K.T. // J. Mater. Chem. 1996. Vol. 6. N 4. P. 573. doi 10.1039/JM9960600573
  7. 7. Soumare Y., Garcia C., Maurer T., Chaboussant G., Ott F., Fiévet F., Piquemal J.Y., Viau G. // Adv. Funct. Mater. 2009. Vol. 19. N 12. P. 1971. doi 10.1002/adfm.200800822
  8. 8. Joseyphus R.J., Shinoda K., Kodama D., Jeyadevan B. // Mater. Chem. Phys. 2010. Vol. 123. N 2-3. P. 487. doi 10.1016/j.matchemphys.2010.05.001
  9. 9. Couto G.G., Klein J.J., Schreiner W.H., Mosca D.H., Zarbin A.J.G. // J. Colloid Interface Sci. 2007. Vol. 311. N 2. P. 461. doi 10.1016/j.jcis.2007.03.045
  10. 10. Wu S.H., Chen D.H. // J. Colloid Interface Sci. 2003. Vol. 259. N 2. P. 282. doi 10.1016/S0021-9797(02)00135-2
  11. 11. Yang H., Shen C., Song N., Wang Y., Yang T., Gao H., Cheng Z. // Nanotechnology. 2010. Vol. 21. N 37. P. 375602. doi 10.1088/0957-4484/21/37/375602
  12. 12. Izu N., Matsubara I., Uchida T., Itoh T., Shin W. // J. Ceram. Soc. Japan. 2017. Vol. 125. N 9. P. 701. doi 10.2109/jcersj2.17114
  13. 13. Žagar E., Žigon M. // Prog. Polym. Sci. 2011. Vol. 36. N 1. P. 53. doi 10.1016/j.progpolymsci.2010.08.004
  14. 14. Zheng Y., Li S., Weng Z., Gao C. // Chem. Soc. Rev. 2015. Vol. 44. N 12. P. 4091. doi 10.1039/c4cs00528g
  15. 15. Khannanov A.A., Rossova A.A., Ignatyeva K.A., Ulakhovich N.A., Gerasimov A.V., Boldyrev A.E., Evtugyn V.G., Rogov A.M., Cherosov M.A., Gilmutdinov I.F., Kutyreva M.P. // J. Magn. Magn. Mater. 2021. P. 168808. doi 10.1016/j.jmmm.2021.168808
  16. 16. Medvedeva O.I., Kambulova S.S., Bondar O.V., Gataulina A.R., Ulakhovich N.A., Gerasimov A.V., Evtugyn V.G., Gilmutdinov I.F., Kutyreva M.P. // J. Nanotechnol. 2017. Vol. 2017. P. 1. doi 10.1155/2017/7607658
  17. 17. Joseyphus R.J., Matsumoto T., Takahashi H., Kodama D., Tohji K., Jeyadevan B. // J. Solid State Chem. 2007. Vol. 180. N 11. P. 3008. doi 10.1016/j.jssc.2007.07.024
  18. 18. Aranishi K., Zhu Q-L., Xu Q. // ChemCatChem. 2014. Vol. 6. N 5. P. 1375. doi 10.1002/cctc.201301006
  19. 19. Alrehaily L.M., Joseph J.M., Biesinger M.C., Guzonas D.A., Wren J.C. // Phys. Chem. Chem. Phys. 2013. Vol. 15. N 3. P. 1014. doi 10.1039/c2cp43094k
  20. 20. Karahan S., Özkar S. // Int. J. Hydrog. Energy 2015. Vol. 40. N 5. P. 2255. doi 10.1016/j.ijhydene.2014.12.028
  21. 21. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир; БИНОМ, Лаборатория знаний, 2006. 438 с. doi 10.1007/978-3-662-04201-4
  22. 22. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc., 2009. doi 10.1002/9780470405840
  23. 23. Практикум по органической химии / Под ред. Г. Беккера. М.: Мир, 1979. Т. 1. 454 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library