RAS Chemistry & Material ScienceЖурнал общей химии Russian Journal of General Chemistry

  • ISSN (Print) 0044-460X
  • ISSN (Online) 3034-5596

Synthesis, structure and non-covalent interactions of 5-methyl-2,3-dihydrothiazolo[2,3-b]thiazolium halides

PII
10.31857/S0044460X23010079-1
DOI
10.31857/S0044460X23010079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 1
Pages
58-66
Abstract
2,3-Dihydrothiazolo[2,3- b ]thiazolium iodides and bromide were obtained for the first time by the cyclization of corresponding metallyl- and propinylsulfanyl derivatives of 1,3-thiazole with iodine and bromine in dichloromethane without heating and the use of strong acids. The structure of the obtained compounds was studied by 1H, 13C{1H} NMR spectroscopy. Structure of the 3-iodomethyl-3,5-dimethyl-2,3-dihydrothiazolo[2,3- b ][1,3]thiazolium heterocyclic system is characterized by the X-ray analysis. The bonding in the heterocyclic system and non-covalent cation-anion interactions are analyzed on the basis of quantum chemical calculations with periodic boundary conditions; I···S chalcogen bond is discussed.
Keywords
соли 2,3-дигидротиазоло[2,3-b]тиазолия рентгеноструктурный анализ теория функционала плотности галогенная связь халькогенная связь
Date of publication
15.01.2023
Year of publication
2023
Number of purchasers
0
Views
33

References

  1. 1. Kurhe Y., Mahesh R., Devadoss T., Gupta D. // J. Pharmacol. Pharmacother. 2014. N 5.P. 197. doi 10.4103/0976-500X.136104
  2. 2. Cascioferro S., Parrino B., Carbone D., Schillaci D., Giovannetti E., Cirrincione G., Diana P. // J. Med. Chem. 2020. Vol. 63. P. 7923. doi 10.1021/acs.jmedchem.9b01245
  3. 3. Ivanenkov Y.A., Yamidanov R.S., Osterman I.A., Sergiev P.V., Aladinskiy V.A., Aladinskaya A.V., Terentiev V.A., Veselov M.S., Ayginin A.A., Skvortsov D.A., Komarova K.S., Sadovnikov S.V., Matniyazov R., Sofronova A.A., Malyshev A.S., Machulkin A.E., Petrov R.A., Lukianov D., Iarovenko S., Bezrukov D.S., Baymiev A.Kh., Dontsova O.A. // J. Antibiotics. 2019. Vol. 72. P. 827. doi 10.1038/s41429-019-0211-y
  4. 4. Dahal S., Cheng R., Cheung P.K., Been T., Malty R., Geng M., Manianis S., Shkreta L., Jahanshahi S., Toutant J., Chan R., Park S., Brockman M.A., Babu M., Mubareka S., Mossman K., Banerjee A., GrayOwen S., Brown M., Houry W.A., Chabot B., Grierson D., Cochrane A. // Viruses. 2022. Vol 14. doi 10.3390/v14010060
  5. 5. Xu Z., Guo J., Yang Y., Zhang M., Ba M., Li Z., Cao Y., He R., Yu M., Zhou H., Li X., Huang X., Guo Y., Guo C. // Eur. J. Med. Chem. 2016. Vol. 123. P. 309. doi 10.1016/j.ejmech.2016.07.047
  6. 6. Tratrat Ch., Haroun M., Tsolaki E., Petrou A., Gavalas A., Geronikaki A. // Curr. Top. Med. Chem. 2021. Vol. 21. N 4. P. 257. doi 10.2174/1568026621999201214232458
  7. 7. Gartel A. // Front. Oncology. 2013. Vol. 3. P. 150. doi 10.3389/fonc.2013.00150
  8. 8. Pandit B., Bhat U.G., Gartel A.L. // Cancer Biol. Ther. 2011. Vol. 11. N 1. P. 43. doi 10.4161/cbt.11.1.13854
  9. 9. Gürsoy E., Dincel E.D., Naesens L., Ulusoy Güzeldemirci N. // Bioorganic Chemistry. 2020. Vol. 95. P. 103496. doi 10.1016/j.bioorg.2019.103496
  10. 10. Chumakov V.A., Demchenko A.M., Krasovskii A.N., Bukhtiarova T.A., Mel'nichenko O.A., Trinus F.P., Lozinskii M.O. // Pharm. Chem. J. 1999. Vol. 33. P. 421. doi 10.1007/BF02510093
  11. 11. He C., Parrish D.A., Shreeve J.M. // Chem. Eur. J. 2014. Vol. 20. P. 6699. doi 10.1002/chem.201402176
  12. 12. Yin Z., Wang Q.-X., Zeng M.-H. // J. Am. Chem. Soc. 2012. Vol. 134. P 4857. doi 10.1021/ja211381e
  13. 13. Starkholm A., Kloo L., Svensson P.H. // ACS Appl. Energy Mater. 2019. Vol. 2. P. 477. doi 10.1021/acsaem.8b01507
  14. 14. Шестимерова Т.А., Быков М.А., Вей Ж., Дикарев Е.В., Шевельков А.В. // Изв. АН. Сер. хим. Т. 68. № 8. С. 1520
  15. 15. Shestimerova T.A., Bykov M.A., Wei Z., Dikarev E.V., Shevelkov A.V. // Russ. Chem. Bull. 2019. Vol. 68. P. 1520. doi 10.1007/s11172-019-2586-0
  16. 16. Shestimerova T.A., Mironov A.V., Bykov M.A., Grigorieva A.V., Wei Z., Dikarev E.V., Shevelkov A.V. // Molecules. 2020. Vol. 25. P. 2765. doi 10.3390/molecules25122765
  17. 17. Savastano M., Bazzicalupi C., Gellini C., Bianchi A. // Crystals. 2020. Vol. 10. doi 10.3390/cryst10050387
  18. 18. Tanaka E., Robertson N. // J. Mater. Chem. (A). 2020. Vol. 8. P. 19991. doi 10.1039/D0TA07377F
  19. 19. Usoltsev A.N., Moneim E., Adonin S.A., Frolova L.A., Derzhavskaya T., Abramov P.A., Anokhin D.V., Korolkov I.V., Luchkin S.Yu., Dremova N.N., Stevenson K.J., Sokolov M.N., Fedin V.P., Troshin P.A. // J. Mater. Chem. (A). 2019. Vol. 7. P. 5957.
  20. 20. Yin Z., Wang Q.X., Hua Zeng M. // J. Am. Chem. Soc. 2012. Vol. 134. N 10. P. 4857. doi 10.1021/ja211381e
  21. 21. Bogolyubskii V.A., Bogolyubskaya L.T. // Chem. Heterocycl. Compd. 1967. Vol. 3. P. 519. doi 10.1007/BF00481589
  22. 22. Bradsher C.K., Jones Jr. W.J. // Recl. Trav. Chim. Pays-Bas. 1968. Vol. 87. P. 274. doi 10.1002/recl.19680870306
  23. 23. Ohtsuka H., Toyofuku H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3234. doi 10.1248/cpb.23.3234
  24. 24. Ohtsuka H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3243. doi 10.1248/cpb.23.3243
  25. 25. Ohtsuka H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3254. doi 10.1248/cpb.23.3254
  26. 26. Aakeroy Ch.B., Bryce D.L., Desiraju G.R., Frontera A., Legon A.C., Nicotra F., Rissanen K., Scheiner S., Terraneo G., Metrangolo P., Resnati G. // Pure Appl. Chem. 2019. Vol. 91. N. 11. P. 1889. doi 10.1515/pac-2018-0713
  27. 27. Cavallo G., Metrangolo P., Pilati T., Resnati G., Terraneo G. // Cryst. Growth Des. 2014. Vol. 14. N 6. P. 2697. doi 10.1021/cg5001717
  28. 28. Bol'shakov O.I., YushinaI.D., Stash A.I., Aysin R.R., Bartashevich E.V., Rakitin O.A. // Struct Chem. 2020. Vol. 31. P. 1729. doi 10.1007/s11224-020-01584-y
  29. 29. Yushina I.D., Tarasova N.M., Kim D.G., Sharutin V.V., Bartashevich E.V. // Crystals. 2019.Vol. 9. P. 506. doi 10.3390/cryst9100506
  30. 30. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
  31. 31. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
  32. 32. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A. K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726
  33. 33. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rerat M., Casassa S., Baima J., Salustro S., Kirtman B. // WIREs Comput Mol Sci. 2018. Vol. 8. P. e1360. doi 10.1002/wcms.1360
  34. 34. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
  35. 35. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. N 2. P. 785. doi 10.1103/PhysRevB.37.785
  36. 36. Gatti C., Saunders V.R., Roetti C. // J. Chem. Phys. 1994. Vol. 101. P. 10686. doi 10.1063/1.467882
  37. 37. Monkhorst H.J., Pack J.D. // Phys. Rev. (B). 1976. Vol. 13. P. 5188. doi 10.1103/PhysRevB.13.5188
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library